Knowledge extraction in large databases using adaptive strategies
- Autores
- Hasperué, Waldo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- reseña artículo
- Estado
- versión publicada
- Descripción
- The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.
Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215
Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP).
Facultad de Informática - Materia
-
Ciencias Informáticas
Base de Datos
Almacenamiento y Recuperación de la Información - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/26180
Ver los metadatos del registro completo
id |
SEDICI_073b6c7eb121cf27bb87b57be2f418fa |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/26180 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Knowledge extraction in large databases using adaptive strategiesHasperué, WaldoCiencias InformáticasBase de DatosAlmacenamiento y Recuperación de la InformaciónThe general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP).Facultad de Informática2013-04info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf43-47http://sedici.unlp.edu.ar/handle/10915/26180enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr13-TO1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:56:28Zoai:sedici.unlp.edu.ar:10915/26180Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:56:28.518SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Knowledge extraction in large databases using adaptive strategies |
title |
Knowledge extraction in large databases using adaptive strategies |
spellingShingle |
Knowledge extraction in large databases using adaptive strategies Hasperué, Waldo Ciencias Informáticas Base de Datos Almacenamiento y Recuperación de la Información |
title_short |
Knowledge extraction in large databases using adaptive strategies |
title_full |
Knowledge extraction in large databases using adaptive strategies |
title_fullStr |
Knowledge extraction in large databases using adaptive strategies |
title_full_unstemmed |
Knowledge extraction in large databases using adaptive strategies |
title_sort |
Knowledge extraction in large databases using adaptive strategies |
dc.creator.none.fl_str_mv |
Hasperué, Waldo |
author |
Hasperué, Waldo |
author_facet |
Hasperué, Waldo |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Base de Datos Almacenamiento y Recuperación de la Información |
topic |
Ciencias Informáticas Base de Datos Almacenamiento y Recuperación de la Información |
dc.description.none.fl_txt_mv |
The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process. Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215 Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP). Facultad de Informática |
description |
The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/review info:eu-repo/semantics/publishedVersion Revision http://purl.org/coar/resource_type/c_dcae04bc info:ar-repo/semantics/resenaArticulo |
format |
review |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/26180 |
url |
http://sedici.unlp.edu.ar/handle/10915/26180 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr13-TO1.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 43-47 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615824979001344 |
score |
13.069144 |