Knowledge extraction in large databases using adaptive strategies

Autores
Hasperué, Waldo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
reseña artículo
Estado
versión publicada
Descripción
The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.
Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215
Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP).
Facultad de Informática
Materia
Ciencias Informáticas
Base de Datos
Almacenamiento y Recuperación de la Información
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/26180

id SEDICI_073b6c7eb121cf27bb87b57be2f418fa
oai_identifier_str oai:sedici.unlp.edu.ar:10915/26180
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Knowledge extraction in large databases using adaptive strategiesHasperué, WaldoCiencias InformáticasBase de DatosAlmacenamiento y Recuperación de la InformaciónThe general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP).Facultad de Informática2013-04info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf43-47http://sedici.unlp.edu.ar/handle/10915/26180enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr13-TO1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:56:28Zoai:sedici.unlp.edu.ar:10915/26180Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:56:28.518SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Knowledge extraction in large databases using adaptive strategies
title Knowledge extraction in large databases using adaptive strategies
spellingShingle Knowledge extraction in large databases using adaptive strategies
Hasperué, Waldo
Ciencias Informáticas
Base de Datos
Almacenamiento y Recuperación de la Información
title_short Knowledge extraction in large databases using adaptive strategies
title_full Knowledge extraction in large databases using adaptive strategies
title_fullStr Knowledge extraction in large databases using adaptive strategies
title_full_unstemmed Knowledge extraction in large databases using adaptive strategies
title_sort Knowledge extraction in large databases using adaptive strategies
dc.creator.none.fl_str_mv Hasperué, Waldo
author Hasperué, Waldo
author_facet Hasperué, Waldo
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Base de Datos
Almacenamiento y Recuperación de la Información
topic Ciencias Informáticas
Base de Datos
Almacenamiento y Recuperación de la Información
dc.description.none.fl_txt_mv The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.
Es revisión de: http://sedici.unlp.edu.ar/handle/10915/4215
Resumen de la tesis presentada por el autor el día 27 de marzo de 2012 para la obtención del título de Doctor en Ciencias Informática (UNLP).
Facultad de Informática
description The general objective of this thesis is the development of an adaptive technique for extracting knowledge in large databases. Nowadays, technology allows storing huge volumes of information. For this reason, the availability of techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be expressed as classification rules, is of interest. However, the information available is expected to change and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge acquired to the changes or variations affecting the original data set. The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting knowledge from large databases using a dynamic model that can adapt to information changes, thus obtaining a data mining technique that can generate useful knowledge and produce results that the end user can exploit. The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, robotics, economy, medicine, plant failure detection, and mobile systems communications. In these cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made after the process.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/review
info:eu-repo/semantics/publishedVersion
Revision
http://purl.org/coar/resource_type/c_dcae04bc
info:ar-repo/semantics/resenaArticulo
format review
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/26180
url http://sedici.unlp.edu.ar/handle/10915/26180
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr13-TO1.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
43-47
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615824979001344
score 13.069144