El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre

Autores
Sánchez, Mariana Belén
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
Elía, Gonzalo Carlos de
Darriba, Luciano Ariel
Descripción
En nuestro trabajo estudiamos el rol dinámico de planetas gigantes masivos en sistemas planetarios que orbitan una estrella central de tipo solar, una vez disipado el gas del disco. Nos focalizamos en el estudio de la última etapa evolutiva de un sistema planetario, una vez formado un planeta gigante gaseoso en el sistema, con el fin de entender cómo afectan estos a la formación de planetas terrestres (planetas rocosos con una delgada capa gaseosa). Para llevar a cabo el análisis en esta etapa postgas, realizamos simulaciones de N − cuerpos utilizando el código Mercury, partiendo de distribuciones iniciales de embriones y planetesimales, calculadas a partir de perfiles de densidad superficial del gas y sólidos de un disco protoplanetario, y de un gigante masivo formado antes de que el gas se disipara del disco. Para cumplir nuestro objetivo de estudio, 163 simulaciones fueron realizadas variando en cada escenario la masa del gigante, siendo 3 Mj, 2 Mj, 1.5 Mj, 1 Mj, 1 Ms y 0.5 Ms, donde Mj representa la masa de Júpiter y Ms la masa de Saturno, las masas elegidas en cada caso. Dividimos nuestro análisis en dos áreas: el rol dinámico del gigante como perturbador masivo del sistema, y el rol del gigante en la formación de planetas potencialmente habitables. - Planeta gigante, como perturbador del sistema: estudiamos los cambios que sufre un sistema planetario, en su última etapa de evolución, en el cual se encuentra un único planeta gigante. Analizamos los cambios respecto a la acreción, eyección y supervivencia de los cuerpos del sistema en relación a cada gigante de cada escenario elegido. - Planeta gigante, como indicador de habitabilidad: analizamos en cada escenario como varía la cantidad y el tipo de planeta que logra ubicarse en la zona habitable, al finalizar cada simulación en relación con el planeta gigante considerado. Luego del análisis desarrollado en nuestro trabajo, presentamos los puntos de interés más relevantes: - Los gigantes más masivos de nuestro trabajo, 2 Mj y 3 Mj, son los que remueven más eficientemente embriones ricos en agua, principalmente a partir de eyecciones. - El escenario de 1 Mj parece representar un límite más allá del cual la eficiencia de migración de embriones externos comienza a disminuir. - Los perturbadores de 1 Ms, 1 Mj y 1.5 Mj son los escenarios más permeables, permitiendo el paso de una mayor cantidad de embriones externos al sistema interior, y más eficientes para la formación de mundos de agua en la zona habitable. - La formación de planetas en la zona habitable parece ser un proceso común en todos nuestros escenarios de trabajo, aunque en ninguno se formó un planeta tipo Tierra. - El perturbador de 0.5 Ms es el único que migra hacia el sistema interior en todas las simulaciones. Nos preguntamos cual será el límite para este tipo de comportamiento.
Licenciado en Astronomía
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Evolución Planetaria
Planetas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/81919

id SEDICI_facc6002ec6572d42cfa0f3142857c04
oai_identifier_str oai:sedici.unlp.edu.ar:10915/81919
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestreSánchez, Mariana BelénCiencias AstronómicasEvolución PlanetariaPlanetasEn nuestro trabajo estudiamos el rol dinámico de planetas gigantes masivos en sistemas planetarios que orbitan una estrella central de tipo solar, una vez disipado el gas del disco. Nos focalizamos en el estudio de la última etapa evolutiva de un sistema planetario, una vez formado un planeta gigante gaseoso en el sistema, con el fin de entender cómo afectan estos a la formación de planetas terrestres (planetas rocosos con una delgada capa gaseosa). Para llevar a cabo el análisis en esta etapa postgas, realizamos simulaciones de N − cuerpos utilizando el código Mercury, partiendo de distribuciones iniciales de embriones y planetesimales, calculadas a partir de perfiles de densidad superficial del gas y sólidos de un disco protoplanetario, y de un gigante masivo formado antes de que el gas se disipara del disco. Para cumplir nuestro objetivo de estudio, 163 simulaciones fueron realizadas variando en cada escenario la masa del gigante, siendo 3 Mj, 2 Mj, 1.5 Mj, 1 Mj, 1 Ms y 0.5 Ms, donde Mj representa la masa de Júpiter y Ms la masa de Saturno, las masas elegidas en cada caso. Dividimos nuestro análisis en dos áreas: el rol dinámico del gigante como perturbador masivo del sistema, y el rol del gigante en la formación de planetas potencialmente habitables. - Planeta gigante, como perturbador del sistema: estudiamos los cambios que sufre un sistema planetario, en su última etapa de evolución, en el cual se encuentra un único planeta gigante. Analizamos los cambios respecto a la acreción, eyección y supervivencia de los cuerpos del sistema en relación a cada gigante de cada escenario elegido. - Planeta gigante, como indicador de habitabilidad: analizamos en cada escenario como varía la cantidad y el tipo de planeta que logra ubicarse en la zona habitable, al finalizar cada simulación en relación con el planeta gigante considerado. Luego del análisis desarrollado en nuestro trabajo, presentamos los puntos de interés más relevantes: - Los gigantes más masivos de nuestro trabajo, 2 Mj y 3 Mj, son los que remueven más eficientemente embriones ricos en agua, principalmente a partir de eyecciones. - El escenario de 1 Mj parece representar un límite más allá del cual la eficiencia de migración de embriones externos comienza a disminuir. - Los perturbadores de 1 Ms, 1 Mj y 1.5 Mj son los escenarios más permeables, permitiendo el paso de una mayor cantidad de embriones externos al sistema interior, y más eficientes para la formación de mundos de agua en la zona habitable. - La formación de planetas en la zona habitable parece ser un proceso común en todos nuestros escenarios de trabajo, aunque en ninguno se formó un planeta tipo Tierra. - El perturbador de 0.5 Ms es el único que migra hacia el sistema interior en todas las simulaciones. Nos preguntamos cual será el límite para este tipo de comportamiento.Licenciado en AstronomíaUniversidad Nacional de La PlataFacultad de Ciencias Astronómicas y GeofísicasElía, Gonzalo Carlos deDarriba, Luciano Ariel2017info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/81919spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:08Zoai:sedici.unlp.edu.ar:10915/81919Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:08.64SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
title El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
spellingShingle El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
Sánchez, Mariana Belén
Ciencias Astronómicas
Evolución Planetaria
Planetas
title_short El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
title_full El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
title_fullStr El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
title_full_unstemmed El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
title_sort El rol de perturbadores masivos en la evolución dinámica de planetas de tipo terrestre
dc.creator.none.fl_str_mv Sánchez, Mariana Belén
author Sánchez, Mariana Belén
author_facet Sánchez, Mariana Belén
author_role author
dc.contributor.none.fl_str_mv Elía, Gonzalo Carlos de
Darriba, Luciano Ariel
dc.subject.none.fl_str_mv Ciencias Astronómicas
Evolución Planetaria
Planetas
topic Ciencias Astronómicas
Evolución Planetaria
Planetas
dc.description.none.fl_txt_mv En nuestro trabajo estudiamos el rol dinámico de planetas gigantes masivos en sistemas planetarios que orbitan una estrella central de tipo solar, una vez disipado el gas del disco. Nos focalizamos en el estudio de la última etapa evolutiva de un sistema planetario, una vez formado un planeta gigante gaseoso en el sistema, con el fin de entender cómo afectan estos a la formación de planetas terrestres (planetas rocosos con una delgada capa gaseosa). Para llevar a cabo el análisis en esta etapa postgas, realizamos simulaciones de N − cuerpos utilizando el código Mercury, partiendo de distribuciones iniciales de embriones y planetesimales, calculadas a partir de perfiles de densidad superficial del gas y sólidos de un disco protoplanetario, y de un gigante masivo formado antes de que el gas se disipara del disco. Para cumplir nuestro objetivo de estudio, 163 simulaciones fueron realizadas variando en cada escenario la masa del gigante, siendo 3 Mj, 2 Mj, 1.5 Mj, 1 Mj, 1 Ms y 0.5 Ms, donde Mj representa la masa de Júpiter y Ms la masa de Saturno, las masas elegidas en cada caso. Dividimos nuestro análisis en dos áreas: el rol dinámico del gigante como perturbador masivo del sistema, y el rol del gigante en la formación de planetas potencialmente habitables. - Planeta gigante, como perturbador del sistema: estudiamos los cambios que sufre un sistema planetario, en su última etapa de evolución, en el cual se encuentra un único planeta gigante. Analizamos los cambios respecto a la acreción, eyección y supervivencia de los cuerpos del sistema en relación a cada gigante de cada escenario elegido. - Planeta gigante, como indicador de habitabilidad: analizamos en cada escenario como varía la cantidad y el tipo de planeta que logra ubicarse en la zona habitable, al finalizar cada simulación en relación con el planeta gigante considerado. Luego del análisis desarrollado en nuestro trabajo, presentamos los puntos de interés más relevantes: - Los gigantes más masivos de nuestro trabajo, 2 Mj y 3 Mj, son los que remueven más eficientemente embriones ricos en agua, principalmente a partir de eyecciones. - El escenario de 1 Mj parece representar un límite más allá del cual la eficiencia de migración de embriones externos comienza a disminuir. - Los perturbadores de 1 Ms, 1 Mj y 1.5 Mj son los escenarios más permeables, permitiendo el paso de una mayor cantidad de embriones externos al sistema interior, y más eficientes para la formación de mundos de agua en la zona habitable. - La formación de planetas en la zona habitable parece ser un proceso común en todos nuestros escenarios de trabajo, aunque en ninguno se formó un planeta tipo Tierra. - El perturbador de 0.5 Ms es el único que migra hacia el sistema interior en todas las simulaciones. Nos preguntamos cual será el límite para este tipo de comportamiento.
Licenciado en Astronomía
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas
description En nuestro trabajo estudiamos el rol dinámico de planetas gigantes masivos en sistemas planetarios que orbitan una estrella central de tipo solar, una vez disipado el gas del disco. Nos focalizamos en el estudio de la última etapa evolutiva de un sistema planetario, una vez formado un planeta gigante gaseoso en el sistema, con el fin de entender cómo afectan estos a la formación de planetas terrestres (planetas rocosos con una delgada capa gaseosa). Para llevar a cabo el análisis en esta etapa postgas, realizamos simulaciones de N − cuerpos utilizando el código Mercury, partiendo de distribuciones iniciales de embriones y planetesimales, calculadas a partir de perfiles de densidad superficial del gas y sólidos de un disco protoplanetario, y de un gigante masivo formado antes de que el gas se disipara del disco. Para cumplir nuestro objetivo de estudio, 163 simulaciones fueron realizadas variando en cada escenario la masa del gigante, siendo 3 Mj, 2 Mj, 1.5 Mj, 1 Mj, 1 Ms y 0.5 Ms, donde Mj representa la masa de Júpiter y Ms la masa de Saturno, las masas elegidas en cada caso. Dividimos nuestro análisis en dos áreas: el rol dinámico del gigante como perturbador masivo del sistema, y el rol del gigante en la formación de planetas potencialmente habitables. - Planeta gigante, como perturbador del sistema: estudiamos los cambios que sufre un sistema planetario, en su última etapa de evolución, en el cual se encuentra un único planeta gigante. Analizamos los cambios respecto a la acreción, eyección y supervivencia de los cuerpos del sistema en relación a cada gigante de cada escenario elegido. - Planeta gigante, como indicador de habitabilidad: analizamos en cada escenario como varía la cantidad y el tipo de planeta que logra ubicarse en la zona habitable, al finalizar cada simulación en relación con el planeta gigante considerado. Luego del análisis desarrollado en nuestro trabajo, presentamos los puntos de interés más relevantes: - Los gigantes más masivos de nuestro trabajo, 2 Mj y 3 Mj, son los que remueven más eficientemente embriones ricos en agua, principalmente a partir de eyecciones. - El escenario de 1 Mj parece representar un límite más allá del cual la eficiencia de migración de embriones externos comienza a disminuir. - Los perturbadores de 1 Ms, 1 Mj y 1.5 Mj son los escenarios más permeables, permitiendo el paso de una mayor cantidad de embriones externos al sistema interior, y más eficientes para la formación de mundos de agua en la zona habitable. - La formación de planetas en la zona habitable parece ser un proceso común en todos nuestros escenarios de trabajo, aunque en ninguno se formó un planeta tipo Tierra. - El perturbador de 0.5 Ms es el único que migra hacia el sistema interior en todas las simulaciones. Nos preguntamos cual será el límite para este tipo de comportamiento.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
Tesis de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/81919
url http://sedici.unlp.edu.ar/handle/10915/81919
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783163314995200
score 12.982451