Reconocimiento de Números Manuscritos
- Autores
- Garbi, José Luis; Mercado, Paula; Lanzarini, Laura Cristina; Russo, Claudia Cecilia
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En la actualidad, el reconocimiento de texto manuscrito sigue siendo una fuente de intensa investigación. Este paper presenta una herramienta de software perteneciente al área de Reconocimiento Inteligente de Caracteres (ICR – Intelligent Character Recognition) para el reconocimiento de números enteros manuscritos. En ella se integra un clasificador basado en redes neuronales feedforward y un conjunto de técnicas pertenecientes al área de procesamiento de imágenes digitales que realiza las adaptaciones adecuadas sobre la imagen de entrada. De esta forma, se ingresa un número entero manuscrito formado por varios dígitos y se obtiene como resultado el reconocimiento de cada uno de los elementos que lo componen. Los resultados de la aplicación de esta herramienta sobre una base de números del repositorio UCI han sido satisfactorios. Es importante destacar que, si bien los resultados expuestos en este artículo se refieren exclusivamente al reconocimiento de números manuscritos, esta herramienta puede ser aplicada al conjunto de caracteres completo. Finalmente se incluyen algunas conclusiones así como algunas líneas de trabajo futuras.
At present, handwritten text recognition still represents a wide source of research. This paper presents a software tool which belongs to the area of ICR (Intelligent Character Recognition) for the recognition of handwritten integers. A classifier based on feedforward neural networks and a set of techniques belonging to digital image processing area are incorporated to this tool, which make the suitable adaptations over the input image. In this way, a handwritten integer made up by several digits is entered and, as a result, the recognition of each of its elements is obtained. The results of applying this tool over a UCI repository number base have been successful. It is important to notice that, even though the results presented in this paper exclusively refer to handwritten number recognition, this tool can be applied to the complete set of characters. Finally, some conclusions are presented together with some future lines of work.
V Workshop de Computación Gráfica, Imágenes Y Visualización
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Informática
Optical character recognition (OCR)
Neural nets
Segmentation
reconocimiento de caracteres manuscritos
Preprocessors
preprocesamiento
segmentación de imágenes
handwritten character recognition
preprocessing
image segmentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22399
Ver los metadatos del registro completo
id |
SEDICI_f9d23d79ff4e0c9387ca041b91ae7b4f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22399 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Reconocimiento de Números ManuscritosGarbi, José LuisMercado, PaulaLanzarini, Laura CristinaRusso, Claudia CeciliaCiencias InformáticasInformáticaOptical character recognition (OCR)Neural netsSegmentationreconocimiento de caracteres manuscritosPreprocessorspreprocesamientosegmentación de imágeneshandwritten character recognitionpreprocessingimage segmentationEn la actualidad, el reconocimiento de texto manuscrito sigue siendo una fuente de intensa investigación. Este paper presenta una herramienta de software perteneciente al área de Reconocimiento Inteligente de Caracteres (ICR – Intelligent Character Recognition) para el reconocimiento de números enteros manuscritos. En ella se integra un clasificador basado en redes neuronales feedforward y un conjunto de técnicas pertenecientes al área de procesamiento de imágenes digitales que realiza las adaptaciones adecuadas sobre la imagen de entrada. De esta forma, se ingresa un número entero manuscrito formado por varios dígitos y se obtiene como resultado el reconocimiento de cada uno de los elementos que lo componen. Los resultados de la aplicación de esta herramienta sobre una base de números del repositorio UCI han sido satisfactorios. Es importante destacar que, si bien los resultados expuestos en este artículo se refieren exclusivamente al reconocimiento de números manuscritos, esta herramienta puede ser aplicada al conjunto de caracteres completo. Finalmente se incluyen algunas conclusiones así como algunas líneas de trabajo futuras.At present, handwritten text recognition still represents a wide source of research. This paper presents a software tool which belongs to the area of ICR (Intelligent Character Recognition) for the recognition of handwritten integers. A classifier based on feedforward neural networks and a set of techniques belonging to digital image processing area are incorporated to this tool, which make the suitable adaptations over the input image. In this way, a handwritten integer made up by several digits is entered and, as a result, the recognition of each of its elements is obtained. The results of applying this tool over a UCI repository number base have been successful. It is important to notice that, even though the results presented in this paper exclusively refer to handwritten number recognition, this tool can be applied to the complete set of characters. Finally, some conclusions are presented together with some future lines of work.V Workshop de Computación Gráfica, Imágenes Y VisualizaciónRed de Universidades con Carreras en Informática2007info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22399spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:25Zoai:sedici.unlp.edu.ar:10915/22399Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:25.667SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Reconocimiento de Números Manuscritos |
title |
Reconocimiento de Números Manuscritos |
spellingShingle |
Reconocimiento de Números Manuscritos Garbi, José Luis Ciencias Informáticas Informática Optical character recognition (OCR) Neural nets Segmentation reconocimiento de caracteres manuscritos Preprocessors preprocesamiento segmentación de imágenes handwritten character recognition preprocessing image segmentation |
title_short |
Reconocimiento de Números Manuscritos |
title_full |
Reconocimiento de Números Manuscritos |
title_fullStr |
Reconocimiento de Números Manuscritos |
title_full_unstemmed |
Reconocimiento de Números Manuscritos |
title_sort |
Reconocimiento de Números Manuscritos |
dc.creator.none.fl_str_mv |
Garbi, José Luis Mercado, Paula Lanzarini, Laura Cristina Russo, Claudia Cecilia |
author |
Garbi, José Luis |
author_facet |
Garbi, José Luis Mercado, Paula Lanzarini, Laura Cristina Russo, Claudia Cecilia |
author_role |
author |
author2 |
Mercado, Paula Lanzarini, Laura Cristina Russo, Claudia Cecilia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática Optical character recognition (OCR) Neural nets Segmentation reconocimiento de caracteres manuscritos Preprocessors preprocesamiento segmentación de imágenes handwritten character recognition preprocessing image segmentation |
topic |
Ciencias Informáticas Informática Optical character recognition (OCR) Neural nets Segmentation reconocimiento de caracteres manuscritos Preprocessors preprocesamiento segmentación de imágenes handwritten character recognition preprocessing image segmentation |
dc.description.none.fl_txt_mv |
En la actualidad, el reconocimiento de texto manuscrito sigue siendo una fuente de intensa investigación. Este paper presenta una herramienta de software perteneciente al área de Reconocimiento Inteligente de Caracteres (ICR – Intelligent Character Recognition) para el reconocimiento de números enteros manuscritos. En ella se integra un clasificador basado en redes neuronales feedforward y un conjunto de técnicas pertenecientes al área de procesamiento de imágenes digitales que realiza las adaptaciones adecuadas sobre la imagen de entrada. De esta forma, se ingresa un número entero manuscrito formado por varios dígitos y se obtiene como resultado el reconocimiento de cada uno de los elementos que lo componen. Los resultados de la aplicación de esta herramienta sobre una base de números del repositorio UCI han sido satisfactorios. Es importante destacar que, si bien los resultados expuestos en este artículo se refieren exclusivamente al reconocimiento de números manuscritos, esta herramienta puede ser aplicada al conjunto de caracteres completo. Finalmente se incluyen algunas conclusiones así como algunas líneas de trabajo futuras. At present, handwritten text recognition still represents a wide source of research. This paper presents a software tool which belongs to the area of ICR (Intelligent Character Recognition) for the recognition of handwritten integers. A classifier based on feedforward neural networks and a set of techniques belonging to digital image processing area are incorporated to this tool, which make the suitable adaptations over the input image. In this way, a handwritten integer made up by several digits is entered and, as a result, the recognition of each of its elements is obtained. The results of applying this tool over a UCI repository number base have been successful. It is important to notice that, even though the results presented in this paper exclusively refer to handwritten number recognition, this tool can be applied to the complete set of characters. Finally, some conclusions are presented together with some future lines of work. V Workshop de Computación Gráfica, Imágenes Y Visualización Red de Universidades con Carreras en Informática |
description |
En la actualidad, el reconocimiento de texto manuscrito sigue siendo una fuente de intensa investigación. Este paper presenta una herramienta de software perteneciente al área de Reconocimiento Inteligente de Caracteres (ICR – Intelligent Character Recognition) para el reconocimiento de números enteros manuscritos. En ella se integra un clasificador basado en redes neuronales feedforward y un conjunto de técnicas pertenecientes al área de procesamiento de imágenes digitales que realiza las adaptaciones adecuadas sobre la imagen de entrada. De esta forma, se ingresa un número entero manuscrito formado por varios dígitos y se obtiene como resultado el reconocimiento de cada uno de los elementos que lo componen. Los resultados de la aplicación de esta herramienta sobre una base de números del repositorio UCI han sido satisfactorios. Es importante destacar que, si bien los resultados expuestos en este artículo se refieren exclusivamente al reconocimiento de números manuscritos, esta herramienta puede ser aplicada al conjunto de caracteres completo. Finalmente se incluyen algunas conclusiones así como algunas líneas de trabajo futuras. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22399 |
url |
http://sedici.unlp.edu.ar/handle/10915/22399 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903773905682432 |
score |
12.993085 |