Multiple clues for license plate detection and recognition
- Autores
- Negri, P.; Tepper, M.; Acevedo, D.; Jacobo, J.; Mejail, M.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag.
Fil:Tepper, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Acevedo, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Lect. Notes Comput. Sci. 2010;6419 LNCS:269-276
- Materia
-
License plate detection
Pixel values
Segmentation algorithms
Shape contexts
Still images
SVM classifiers
License plate detection
Optical character recognition (OCR)
Pixel values
Segmentation algorithms
Shape contexts
Still images
SVM classifiers
Automobiles
Classifiers
Computer vision
Feature extraction
Character recognition
Image segmentation
License plates (automobile)
Optical character recognition
Optical character recognition
Pattern recognition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_03029743_v6419LNCS_n_p269_Negri
Ver los metadatos del registro completo
id |
BDUBAFCEN_33585c4aa5cac857e95a853ebede748a |
---|---|
oai_identifier_str |
paperaa:paper_03029743_v6419LNCS_n_p269_Negri |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Multiple clues for license plate detection and recognitionNegri, P.Tepper, M.Acevedo, D.Jacobo, J.Mejail, M.License plate detectionPixel valuesSegmentation algorithmsShape contextsStill imagesSVM classifiersLicense plate detectionOptical character recognition (OCR)Pixel valuesSegmentation algorithmsShape contextsStill imagesSVM classifiersAutomobilesClassifiersComputer visionFeature extractionCharacter recognitionImage segmentationLicense plates (automobile)Optical character recognitionOptical character recognitionPattern recognitionThis paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag.Fil:Tepper, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Acevedo, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_03029743_v6419LNCS_n_p269_NegriLect. Notes Comput. Sci. 2010;6419 LNCS:269-276reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:21Zpaperaa:paper_03029743_v6419LNCS_n_p269_NegriInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.553Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Multiple clues for license plate detection and recognition |
title |
Multiple clues for license plate detection and recognition |
spellingShingle |
Multiple clues for license plate detection and recognition Negri, P. License plate detection Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers License plate detection Optical character recognition (OCR) Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers Automobiles Classifiers Computer vision Feature extraction Character recognition Image segmentation License plates (automobile) Optical character recognition Optical character recognition Pattern recognition |
title_short |
Multiple clues for license plate detection and recognition |
title_full |
Multiple clues for license plate detection and recognition |
title_fullStr |
Multiple clues for license plate detection and recognition |
title_full_unstemmed |
Multiple clues for license plate detection and recognition |
title_sort |
Multiple clues for license plate detection and recognition |
dc.creator.none.fl_str_mv |
Negri, P. Tepper, M. Acevedo, D. Jacobo, J. Mejail, M. |
author |
Negri, P. |
author_facet |
Negri, P. Tepper, M. Acevedo, D. Jacobo, J. Mejail, M. |
author_role |
author |
author2 |
Tepper, M. Acevedo, D. Jacobo, J. Mejail, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
License plate detection Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers License plate detection Optical character recognition (OCR) Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers Automobiles Classifiers Computer vision Feature extraction Character recognition Image segmentation License plates (automobile) Optical character recognition Optical character recognition Pattern recognition |
topic |
License plate detection Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers License plate detection Optical character recognition (OCR) Pixel values Segmentation algorithms Shape contexts Still images SVM classifiers Automobiles Classifiers Computer vision Feature extraction Character recognition Image segmentation License plates (automobile) Optical character recognition Optical character recognition Pattern recognition |
dc.description.none.fl_txt_mv |
This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag. Fil:Tepper, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Acevedo, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mejail, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
This paper addresses a license plate detection and recognition (LPR) task on still images of trucks. The main contribution of our LPR system is the fusion of different segmentation algorithms used to improve the license plate detection. We also compare the performance of two kinds of classifiers for optical character recognition (OCR): one based on the a contrario framework using the shape contexts as features and the other based on a SVM classifier using the intensity pixel values as features. © 2010 Springer-Verlag. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_03029743_v6419LNCS_n_p269_Negri |
url |
http://hdl.handle.net/20.500.12110/paper_03029743_v6419LNCS_n_p269_Negri |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Lect. Notes Comput. Sci. 2010;6419 LNCS:269-276 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340700383870976 |
score |
12.623145 |