Boundary dynamics and multiple reflection expansion for Robin boundary conditions
- Autores
- Bordag, Michael; Falomir, Horacio Alberto; Santángelo, Eve Mariel; Vassilevich, Dmitri
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (∇N + S) φ = 0. Information on quantum boundary dynamics is then encoded in the S-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S² with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
boundary dynamics
Robin boundary condition
Physics
Neumann boundary condition
heat kernel
effective action - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126019
Ver los metadatos del registro completo
id |
SEDICI_f87d97167e150ff57a6f2846784a817b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126019 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Boundary dynamics and multiple reflection expansion for Robin boundary conditionsBordag, MichaelFalomir, Horacio AlbertoSantángelo, Eve MarielVassilevich, DmitriCiencias ExactasFísicaboundary dynamicsRobin boundary conditionPhysicsNeumann boundary conditionheat kerneleffective actionIn the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (∇<sub>N</sub> + S) φ = 0. Information on quantum boundary dynamics is then encoded in the S-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S² with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed.Facultad de Ciencias Exactas2002-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126019enginfo:eu-repo/semantics/altIdentifier/issn/0556-2821info:eu-repo/semantics/altIdentifier/issn/1089-4918info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0111073info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.65.064032info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:24Zoai:sedici.unlp.edu.ar:10915/126019Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:24.691SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
title |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
spellingShingle |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions Bordag, Michael Ciencias Exactas Física boundary dynamics Robin boundary condition Physics Neumann boundary condition heat kernel effective action |
title_short |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
title_full |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
title_fullStr |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
title_full_unstemmed |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
title_sort |
Boundary dynamics and multiple reflection expansion for Robin boundary conditions |
dc.creator.none.fl_str_mv |
Bordag, Michael Falomir, Horacio Alberto Santángelo, Eve Mariel Vassilevich, Dmitri |
author |
Bordag, Michael |
author_facet |
Bordag, Michael Falomir, Horacio Alberto Santángelo, Eve Mariel Vassilevich, Dmitri |
author_role |
author |
author2 |
Falomir, Horacio Alberto Santángelo, Eve Mariel Vassilevich, Dmitri |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física boundary dynamics Robin boundary condition Physics Neumann boundary condition heat kernel effective action |
topic |
Ciencias Exactas Física boundary dynamics Robin boundary condition Physics Neumann boundary condition heat kernel effective action |
dc.description.none.fl_txt_mv |
In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (∇<sub>N</sub> + S) φ = 0. Information on quantum boundary dynamics is then encoded in the S-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S² with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed. Facultad de Ciencias Exactas |
description |
In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (∇<sub>N</sub> + S) φ = 0. Information on quantum boundary dynamics is then encoded in the S-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S² with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and a brane world are briefly discussed. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126019 |
url |
http://sedici.unlp.edu.ar/handle/10915/126019 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0556-2821 info:eu-repo/semantics/altIdentifier/issn/1089-4918 info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0111073 info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.65.064032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260522345431040 |
score |
13.13397 |