Análisis de trayectorias utilizando técnicas de minería de datos

Autores
Reyes Zambrano, Gary Xavier
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Lanzarini, Laura Cristina
Hasperué, Waldo
Descripción
Los avances tecnológicos han facilitado la captura, representación y almacenamiento de información relacionada con las trayectorias vehiculares, gracias al uso de sensores, sistemas de navegación GPS y aplicaciones móviles. Estos datos, combinados con técnicas de inteligencia artificial, permiten identificar patrones de flujo vehicular. En los últimos años, las tecnologías de recolección y análisis de datos han logrado abordar el problema del congestionamiento vial y la identificación de zonas altamente densas. La comprensión de los datos de tráfico y el uso de técnicas de Inteligencia Artificial (IA) son fundamentales para abordar la identificación de patrones y zonas de congestión de manera eficiente y precisa. Investigaciones recientes han integrado técnicas de aprendizaje automático y minería de datos para descubrir patrones ocultos y anomalías en el flujo de tráfico. La combinación de estrategias de agrupamiento con otras metodologías de análisis proporciona una visión integral y sistémica del flujo vehicular en diversos contextos. El agrupamiento de trayectorias se enfoca en datos que representan movimientos en un espacio y tiempo determinado. En el agrupamiento de flujos de datos, han surgido algoritmos especializados para enfrentar los desafíos asociados con la dinámica y continuidad de la información. Estos algoritmos, están específicamente adaptados para el procesamiento continuo de datos y representan avances significativos en el campo del agrupamiento. Uno de los métodos ampliamente utilizados es el análisis de datos de trayectorias que son generadas por vehículos, mediante técnicas de agrupamiento. Estos métodos permiten dividir el flujo vehicular en grupos homogéneos, identificando patrones y comportamientos similares en el tráfico, lo que facilita la identificación de áreas con altos niveles de congestión sean estos persistentes o emergentes. Considerando las restricciones observadas en trabajos previos y la necesidad crucial de realizar un análisis del flujo vehicular, se plantea como un desafío central a abordar el detectar áreas de variabilidad alta en base a la densidad vehicular Para dar solución al problema se plantea: Desarrollar una técnica adaptativa basada en un algoritmo de agrupamiento de flujo de datos que procese datos de trayectorias e índices vehiculares históricos que permita la identificación de las diversas fluctuaciones en las densidades vehiculares de zonas urbanas
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Minería de Datos
Trayectorias
Agrupamiento de Trayectorias
Densidad
Variabilidad
Flujo Vehicular
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/174995

id SEDICI_f60e1d1ce9bfb9453a3da46ea3a96e21
oai_identifier_str oai:sedici.unlp.edu.ar:10915/174995
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Análisis de trayectorias utilizando técnicas de minería de datosReyes Zambrano, Gary XavierCiencias InformáticasMinería de DatosTrayectoriasAgrupamiento de TrayectoriasDensidadVariabilidadFlujo VehicularLos avances tecnológicos han facilitado la captura, representación y almacenamiento de información relacionada con las trayectorias vehiculares, gracias al uso de sensores, sistemas de navegación GPS y aplicaciones móviles. Estos datos, combinados con técnicas de inteligencia artificial, permiten identificar patrones de flujo vehicular. En los últimos años, las tecnologías de recolección y análisis de datos han logrado abordar el problema del congestionamiento vial y la identificación de zonas altamente densas. La comprensión de los datos de tráfico y el uso de técnicas de Inteligencia Artificial (IA) son fundamentales para abordar la identificación de patrones y zonas de congestión de manera eficiente y precisa. Investigaciones recientes han integrado técnicas de aprendizaje automático y minería de datos para descubrir patrones ocultos y anomalías en el flujo de tráfico. La combinación de estrategias de agrupamiento con otras metodologías de análisis proporciona una visión integral y sistémica del flujo vehicular en diversos contextos. El agrupamiento de trayectorias se enfoca en datos que representan movimientos en un espacio y tiempo determinado. En el agrupamiento de flujos de datos, han surgido algoritmos especializados para enfrentar los desafíos asociados con la dinámica y continuidad de la información. Estos algoritmos, están específicamente adaptados para el procesamiento continuo de datos y representan avances significativos en el campo del agrupamiento. Uno de los métodos ampliamente utilizados es el análisis de datos de trayectorias que son generadas por vehículos, mediante técnicas de agrupamiento. Estos métodos permiten dividir el flujo vehicular en grupos homogéneos, identificando patrones y comportamientos similares en el tráfico, lo que facilita la identificación de áreas con altos niveles de congestión sean estos persistentes o emergentes. Considerando las restricciones observadas en trabajos previos y la necesidad crucial de realizar un análisis del flujo vehicular, se plantea como un desafío central a abordar el detectar áreas de variabilidad alta en base a la densidad vehicular Para dar solución al problema se plantea: Desarrollar una técnica adaptativa basada en un algoritmo de agrupamiento de flujo de datos que procese datos de trayectorias e índices vehiculares históricos que permita la identificación de las diversas fluctuaciones en las densidades vehiculares de zonas urbanasDoctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura CristinaHasperué, Waldo2024-12-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/174995https://doi.org/10.35537/10915/174995spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:47:03Zoai:sedici.unlp.edu.ar:10915/174995Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:47:04.062SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Análisis de trayectorias utilizando técnicas de minería de datos
title Análisis de trayectorias utilizando técnicas de minería de datos
spellingShingle Análisis de trayectorias utilizando técnicas de minería de datos
Reyes Zambrano, Gary Xavier
Ciencias Informáticas
Minería de Datos
Trayectorias
Agrupamiento de Trayectorias
Densidad
Variabilidad
Flujo Vehicular
title_short Análisis de trayectorias utilizando técnicas de minería de datos
title_full Análisis de trayectorias utilizando técnicas de minería de datos
title_fullStr Análisis de trayectorias utilizando técnicas de minería de datos
title_full_unstemmed Análisis de trayectorias utilizando técnicas de minería de datos
title_sort Análisis de trayectorias utilizando técnicas de minería de datos
dc.creator.none.fl_str_mv Reyes Zambrano, Gary Xavier
author Reyes Zambrano, Gary Xavier
author_facet Reyes Zambrano, Gary Xavier
author_role author
dc.contributor.none.fl_str_mv Lanzarini, Laura Cristina
Hasperué, Waldo
dc.subject.none.fl_str_mv Ciencias Informáticas
Minería de Datos
Trayectorias
Agrupamiento de Trayectorias
Densidad
Variabilidad
Flujo Vehicular
topic Ciencias Informáticas
Minería de Datos
Trayectorias
Agrupamiento de Trayectorias
Densidad
Variabilidad
Flujo Vehicular
dc.description.none.fl_txt_mv Los avances tecnológicos han facilitado la captura, representación y almacenamiento de información relacionada con las trayectorias vehiculares, gracias al uso de sensores, sistemas de navegación GPS y aplicaciones móviles. Estos datos, combinados con técnicas de inteligencia artificial, permiten identificar patrones de flujo vehicular. En los últimos años, las tecnologías de recolección y análisis de datos han logrado abordar el problema del congestionamiento vial y la identificación de zonas altamente densas. La comprensión de los datos de tráfico y el uso de técnicas de Inteligencia Artificial (IA) son fundamentales para abordar la identificación de patrones y zonas de congestión de manera eficiente y precisa. Investigaciones recientes han integrado técnicas de aprendizaje automático y minería de datos para descubrir patrones ocultos y anomalías en el flujo de tráfico. La combinación de estrategias de agrupamiento con otras metodologías de análisis proporciona una visión integral y sistémica del flujo vehicular en diversos contextos. El agrupamiento de trayectorias se enfoca en datos que representan movimientos en un espacio y tiempo determinado. En el agrupamiento de flujos de datos, han surgido algoritmos especializados para enfrentar los desafíos asociados con la dinámica y continuidad de la información. Estos algoritmos, están específicamente adaptados para el procesamiento continuo de datos y representan avances significativos en el campo del agrupamiento. Uno de los métodos ampliamente utilizados es el análisis de datos de trayectorias que son generadas por vehículos, mediante técnicas de agrupamiento. Estos métodos permiten dividir el flujo vehicular en grupos homogéneos, identificando patrones y comportamientos similares en el tráfico, lo que facilita la identificación de áreas con altos niveles de congestión sean estos persistentes o emergentes. Considerando las restricciones observadas en trabajos previos y la necesidad crucial de realizar un análisis del flujo vehicular, se plantea como un desafío central a abordar el detectar áreas de variabilidad alta en base a la densidad vehicular Para dar solución al problema se plantea: Desarrollar una técnica adaptativa basada en un algoritmo de agrupamiento de flujo de datos que procese datos de trayectorias e índices vehiculares históricos que permita la identificación de las diversas fluctuaciones en las densidades vehiculares de zonas urbanas
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
description Los avances tecnológicos han facilitado la captura, representación y almacenamiento de información relacionada con las trayectorias vehiculares, gracias al uso de sensores, sistemas de navegación GPS y aplicaciones móviles. Estos datos, combinados con técnicas de inteligencia artificial, permiten identificar patrones de flujo vehicular. En los últimos años, las tecnologías de recolección y análisis de datos han logrado abordar el problema del congestionamiento vial y la identificación de zonas altamente densas. La comprensión de los datos de tráfico y el uso de técnicas de Inteligencia Artificial (IA) son fundamentales para abordar la identificación de patrones y zonas de congestión de manera eficiente y precisa. Investigaciones recientes han integrado técnicas de aprendizaje automático y minería de datos para descubrir patrones ocultos y anomalías en el flujo de tráfico. La combinación de estrategias de agrupamiento con otras metodologías de análisis proporciona una visión integral y sistémica del flujo vehicular en diversos contextos. El agrupamiento de trayectorias se enfoca en datos que representan movimientos en un espacio y tiempo determinado. En el agrupamiento de flujos de datos, han surgido algoritmos especializados para enfrentar los desafíos asociados con la dinámica y continuidad de la información. Estos algoritmos, están específicamente adaptados para el procesamiento continuo de datos y representan avances significativos en el campo del agrupamiento. Uno de los métodos ampliamente utilizados es el análisis de datos de trayectorias que son generadas por vehículos, mediante técnicas de agrupamiento. Estos métodos permiten dividir el flujo vehicular en grupos homogéneos, identificando patrones y comportamientos similares en el tráfico, lo que facilita la identificación de áreas con altos niveles de congestión sean estos persistentes o emergentes. Considerando las restricciones observadas en trabajos previos y la necesidad crucial de realizar un análisis del flujo vehicular, se plantea como un desafío central a abordar el detectar áreas de variabilidad alta en base a la densidad vehicular Para dar solución al problema se plantea: Desarrollar una técnica adaptativa basada en un algoritmo de agrupamiento de flujo de datos que procese datos de trayectorias e índices vehiculares históricos que permita la identificación de las diversas fluctuaciones en las densidades vehiculares de zonas urbanas
publishDate 2024
dc.date.none.fl_str_mv 2024-12-12
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/174995
https://doi.org/10.35537/10915/174995
url http://sedici.unlp.edu.ar/handle/10915/174995
https://doi.org/10.35537/10915/174995
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616334887878656
score 13.070432