Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018
- Autores
- Represa, Natacha Soledad; Palomar Vázquez, Jesús; Porta, Atilio Andrés; Fernández Sarría, Alfonso
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fine particulate matter (PM2.5) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM2.5 levels in the Valencian Community with a resolution of 1 km for the period 2008–2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM2.5 levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM2.5 for the area of the Valencian Community throughout the study period.
Centro de Investigaciones del Medioambiente - Materia
-
Química
PM2.5
LUR
Random Forest
MODIS
MERRA-2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125389
Ver los metadatos del registro completo
id |
SEDICI_f4fe5ff7fe3353ea7d46b9d61f4752c5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125389 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018Represa, Natacha SoledadPalomar Vázquez, JesúsPorta, Atilio AndrésFernández Sarría, AlfonsoQuímicaPM2.5LURRandom ForestMODISMERRA-2Fine particulate matter (PM2.5) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM2.5 levels in the Valencian Community with a resolution of 1 km for the period 2008–2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM2.5 levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM2.5 for the area of the Valencian Community throughout the study period.Centro de Investigaciones del Medioambiente2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125389enginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-3900/19/1/13info:eu-repo/semantics/altIdentifier/issn/2504-3900info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019019013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:03Zoai:sedici.unlp.edu.ar:10915/125389Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:03.554SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
title |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
spellingShingle |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 Represa, Natacha Soledad Química PM2.5 LUR Random Forest MODIS MERRA-2 |
title_short |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_full |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_fullStr |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_full_unstemmed |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
title_sort |
Daily Concentrations of PM2.5 in the Valencian Community Using Random Forest for the Period 2008–2018 |
dc.creator.none.fl_str_mv |
Represa, Natacha Soledad Palomar Vázquez, Jesús Porta, Atilio Andrés Fernández Sarría, Alfonso |
author |
Represa, Natacha Soledad |
author_facet |
Represa, Natacha Soledad Palomar Vázquez, Jesús Porta, Atilio Andrés Fernández Sarría, Alfonso |
author_role |
author |
author2 |
Palomar Vázquez, Jesús Porta, Atilio Andrés Fernández Sarría, Alfonso |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Química PM2.5 LUR Random Forest MODIS MERRA-2 |
topic |
Química PM2.5 LUR Random Forest MODIS MERRA-2 |
dc.description.none.fl_txt_mv |
Fine particulate matter (PM2.5) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM2.5 levels in the Valencian Community with a resolution of 1 km for the period 2008–2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM2.5 levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM2.5 for the area of the Valencian Community throughout the study period. Centro de Investigaciones del Medioambiente |
description |
Fine particulate matter (PM2.5) is a global problem that affects the population health and contributes to climate change. Remote sensing provides useful information for the development of air quality models. This work aims to obtain a daily model of PM2.5 levels in the Valencian Community with a resolution of 1 km for the period 2008–2018. MODIS-MAIAC images, meteorological parameters of the MERRA-2 project, land cover information and ground level measurements of PM2.5 levels were analysed with Random Forest. The verification of the model was carried out using cross-validation repeated ten times, and an evaluation of a test set with 20% of the collected information. The final model was used to generate maps of the daily concentrations of PM2.5 for the area of the Valencian Community throughout the study period. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125389 |
url |
http://sedici.unlp.edu.ar/handle/10915/125389 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-3900/19/1/13 info:eu-repo/semantics/altIdentifier/issn/2504-3900 info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019019013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616179909394432 |
score |
13.070432 |