Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques
- Autores
- Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.
Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina - Materia
-
PM2.5
CYCLIST
MACHINE LEARNING
EXPOSURE MODELS
URBAN ENVIRONMENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260833
Ver los metadatos del registro completo
id |
CONICETDig_e542f97154ca2c65db193de1bf90d5ef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260833 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniquesRodriguez Nuñez, MartinTavera Busso, IvánCarreras, Hebe AlejandraPM2.5CYCLISTMACHINE LEARNINGEXPOSURE MODELSURBAN ENVIRONMENTShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes.Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaElsevier2024-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260833Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra; Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques; Elsevier; Heliyon; 10; 2; 1-2024; 1-122405-8440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405844024007552info:eu-repo/semantics/altIdentifier/doi/10.1016/j.heliyon.2024.e24724info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:10Zoai:ri.conicet.gov.ar:11336/260833instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:11.009CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
spellingShingle |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques Rodriguez Nuñez, Martin PM2.5 CYCLIST MACHINE LEARNING EXPOSURE MODELS URBAN ENVIRONMENTS |
title_short |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_full |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_fullStr |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_full_unstemmed |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
title_sort |
Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques |
dc.creator.none.fl_str_mv |
Rodriguez Nuñez, Martin Tavera Busso, Iván Carreras, Hebe Alejandra |
author |
Rodriguez Nuñez, Martin |
author_facet |
Rodriguez Nuñez, Martin Tavera Busso, Iván Carreras, Hebe Alejandra |
author_role |
author |
author2 |
Tavera Busso, Iván Carreras, Hebe Alejandra |
author2_role |
author author |
dc.subject.none.fl_str_mv |
PM2.5 CYCLIST MACHINE LEARNING EXPOSURE MODELS URBAN ENVIRONMENTS |
topic |
PM2.5 CYCLIST MACHINE LEARNING EXPOSURE MODELS URBAN ENVIRONMENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes. Fil: Rodriguez Nuñez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Tavera Busso, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina Fil: Carreras, Hebe Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina |
description |
Cyclists are particularly vulnerable to travel-related exposure to air pollution. Understanding the actors that increase exposure is crucial for promoting healthier urban environments. Machine learning models have successfully predicted air pollutant concentrations, but they tend to be less interpretable than classical statistical ones, such as linear models. This study aimed to develop a predictive model to assess cyclists’ exposure to fine particulate matter (PM2.5) in urban environments. The model was generated using geo-temporally referenced data and machine learning techniques. We explored several models and found that the gradient boosting machine learning model best fitted the PM2.5 predictions, with a minimum root mean square error value of 5.62 μg m−3. The variables with greatest influence on cyclist exposure were the temporal ones (month, day of the week, and time of the day), followed by meteorological variables, such as temperature, relative humidity, wind speed, wind direction, and atmospheric pressure. Additionally, we considered relevant attributes, which are partially linked to spatial characteristics. These attributes encompass street typology, vegetation density, and the flow of vehicles on a particular street, which quantifies the number of vehicles passing a given point per minute. Mean PM2.5 concentration was lower in bicycle paths away from vehicular traffic than in bike lanes along streets. These outcomes underscore the need to thoughtfully design public transportation routes, including bus routes, concerning the network of bicycle pathways. Such strategic planning attempts to improve the air quality in urban landscapes. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260833 Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra; Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques; Elsevier; Heliyon; 10; 2; 1-2024; 1-12 2405-8440 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260833 |
identifier_str_mv |
Rodriguez Nuñez, Martin; Tavera Busso, Iván; Carreras, Hebe Alejandra; Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques; Elsevier; Heliyon; 10; 2; 1-2024; 1-12 2405-8440 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2405844024007552 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.heliyon.2024.e24724 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614285107396608 |
score |
13.070432 |