Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020
- Autores
- Rosati, Germán; Domenech, Laia; Chazarreta, Adriana Silvina; Maguire, Tomás
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a first approximation to the quantification of social representations about the COVID-19, using news comments. A web crawler was developed to construct the dataset of reader’s comments. We detect relevant topics in the dataset using Latent Dirichlet Allocation, and analyze its evolution during time. Finally, we show a first prototype to the prediction of the majority topics, using FastText.
Sociedad Argentina de Informática - Materia
-
Ciencias Informáticas
NLP
News comments
COVID-19
Social representations - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/114634
Ver los metadatos del registro completo
id |
SEDICI_f4385837f386822597b210ba81f3fb2d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/114634 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020Rosati, GermánDomenech, LaiaChazarreta, Adriana SilvinaMaguire, TomásCiencias InformáticasNLPNews commentsCOVID-19Social representationsWe present a first approximation to the quantification of social representations about the COVID-19, using news comments. A web crawler was developed to construct the dataset of reader’s comments. We detect relevant topics in the dataset using Latent Dirichlet Allocation, and analyze its evolution during time. Finally, we show a first prototype to the prediction of the majority topics, using FastText.Sociedad Argentina de Informática2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf11-19http://sedici.unlp.edu.ar/handle/10915/114634enginfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-02.pdfinfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:18:34Zoai:sedici.unlp.edu.ar:10915/114634Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:18:34.604SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
title |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
spellingShingle |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 Rosati, Germán Ciencias Informáticas NLP News comments COVID-19 Social representations |
title_short |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
title_full |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
title_fullStr |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
title_full_unstemmed |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
title_sort |
Capturing and analyzing social representations: a first application of Natural Language Processing techniques to reader’s comments in COVID-19 news : Argentina, 2020 |
dc.creator.none.fl_str_mv |
Rosati, Germán Domenech, Laia Chazarreta, Adriana Silvina Maguire, Tomás |
author |
Rosati, Germán |
author_facet |
Rosati, Germán Domenech, Laia Chazarreta, Adriana Silvina Maguire, Tomás |
author_role |
author |
author2 |
Domenech, Laia Chazarreta, Adriana Silvina Maguire, Tomás |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas NLP News comments COVID-19 Social representations |
topic |
Ciencias Informáticas NLP News comments COVID-19 Social representations |
dc.description.none.fl_txt_mv |
We present a first approximation to the quantification of social representations about the COVID-19, using news comments. A web crawler was developed to construct the dataset of reader’s comments. We detect relevant topics in the dataset using Latent Dirichlet Allocation, and analyze its evolution during time. Finally, we show a first prototype to the prediction of the majority topics, using FastText. Sociedad Argentina de Informática |
description |
We present a first approximation to the quantification of social representations about the COVID-19, using news comments. A web crawler was developed to construct the dataset of reader’s comments. We detect relevant topics in the dataset using Latent Dirichlet Allocation, and analyze its evolution during time. Finally, we show a first prototype to the prediction of the majority topics, using FastText. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/114634 |
url |
http://sedici.unlp.edu.ar/handle/10915/114634 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-02.pdf info:eu-repo/semantics/altIdentifier/issn/2683-8966 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 11-19 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064243909066752 |
score |
13.22299 |