IQR: una medida estadística como modelo para la sintonización computacional
- Autores
- Caymes Scutari, Paola; Tardivo, María Laura; BIanchini, Germán; Méndez Garabetti, Miguel
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El Rango Intercuartil (o métrica IQR) es una medida estadística que cuantifica la dispersión de la muestra considerada, es decir, la variabilidad de la distribución de los elementos muestrales en base a algún parámetro de interés. En este proyecto, centrado en métodos que como muestra del espacio de búsqueda consideran poblaciones de individuos (muestra de elementos candidatos) se propone la utilización del rango intercuartil de los valores de aptitud de los individuos como un indicador de la tendencia a estancarse que tiene el algoritmo. El caso de estudio se refiere a la predicción de incendios forestales. Por lo tanto, la función de aptitud cuantifica el grado de coincidencia entre la predicción arrojada por cierto individuo y el incendio real. El IQR actuaría como un indicador de estancamiento y/o convergencia prematura y sería de utilidad para tomar decisiones sobre cuándo la predicción alcanzada es suficientemente buena, o bien ha alcanzado un cierto tope de calidad que no podrá mejorarse, y por consiguiente sea recomendable dar paso a una nueva población y una nueva generación. En resumen, se propone un modelo basado en el IQR para sintonizar de forma automática y dinámica el parámetro que regula la cantidad de generaciones del proceso evolutivo, a fin de evitar estancamiento y convergencia prematura.
Eje: Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
rango intercuartil
evolución diferencial
algoritmos evolutivos
sintonización
reducción de incertidumbre - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/77244
Ver los metadatos del registro completo
id |
SEDICI_f2754f43cbff11e674413ec3d0496438 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/77244 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
IQR: una medida estadística como modelo para la sintonización computacionalCaymes Scutari, PaolaTardivo, María LauraBIanchini, GermánMéndez Garabetti, MiguelCiencias Informáticasrango intercuartilevolución diferencialalgoritmos evolutivossintonizaciónreducción de incertidumbreEl Rango Intercuartil (o métrica IQR) es una medida estadística que cuantifica la dispersión de la muestra considerada, es decir, la variabilidad de la distribución de los elementos muestrales en base a algún parámetro de interés. En este proyecto, centrado en métodos que como muestra del espacio de búsqueda consideran poblaciones de individuos (muestra de elementos candidatos) se propone la utilización del rango intercuartil de los valores de aptitud de los individuos como un indicador de la tendencia a estancarse que tiene el algoritmo. El caso de estudio se refiere a la predicción de incendios forestales. Por lo tanto, la función de aptitud cuantifica el grado de coincidencia entre la predicción arrojada por cierto individuo y el incendio real. El IQR actuaría como un indicador de estancamiento y/o convergencia prematura y sería de utilidad para tomar decisiones sobre cuándo la predicción alcanzada es suficientemente buena, o bien ha alcanzado un cierto tope de calidad que no podrá mejorarse, y por consiguiente sea recomendable dar paso a una nueva población y una nueva generación. En resumen, se propone un modelo basado en el IQR para sintonizar de forma automática y dinámica el parámetro que regula la cantidad de generaciones del proceso evolutivo, a fin de evitar estancamiento y convergencia prematura.Eje: Procesamiento Distribuido y ParaleloRed de Universidades con Carreras en Informática2019-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/77244spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3info:eu-repo/semantics/reference/hdl/10915/76941info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:13:45Zoai:sedici.unlp.edu.ar:10915/77244Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:13:45.358SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
IQR: una medida estadística como modelo para la sintonización computacional |
title |
IQR: una medida estadística como modelo para la sintonización computacional |
spellingShingle |
IQR: una medida estadística como modelo para la sintonización computacional Caymes Scutari, Paola Ciencias Informáticas rango intercuartil evolución diferencial algoritmos evolutivos sintonización reducción de incertidumbre |
title_short |
IQR: una medida estadística como modelo para la sintonización computacional |
title_full |
IQR: una medida estadística como modelo para la sintonización computacional |
title_fullStr |
IQR: una medida estadística como modelo para la sintonización computacional |
title_full_unstemmed |
IQR: una medida estadística como modelo para la sintonización computacional |
title_sort |
IQR: una medida estadística como modelo para la sintonización computacional |
dc.creator.none.fl_str_mv |
Caymes Scutari, Paola Tardivo, María Laura BIanchini, Germán Méndez Garabetti, Miguel |
author |
Caymes Scutari, Paola |
author_facet |
Caymes Scutari, Paola Tardivo, María Laura BIanchini, Germán Méndez Garabetti, Miguel |
author_role |
author |
author2 |
Tardivo, María Laura BIanchini, Germán Méndez Garabetti, Miguel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas rango intercuartil evolución diferencial algoritmos evolutivos sintonización reducción de incertidumbre |
topic |
Ciencias Informáticas rango intercuartil evolución diferencial algoritmos evolutivos sintonización reducción de incertidumbre |
dc.description.none.fl_txt_mv |
El Rango Intercuartil (o métrica IQR) es una medida estadística que cuantifica la dispersión de la muestra considerada, es decir, la variabilidad de la distribución de los elementos muestrales en base a algún parámetro de interés. En este proyecto, centrado en métodos que como muestra del espacio de búsqueda consideran poblaciones de individuos (muestra de elementos candidatos) se propone la utilización del rango intercuartil de los valores de aptitud de los individuos como un indicador de la tendencia a estancarse que tiene el algoritmo. El caso de estudio se refiere a la predicción de incendios forestales. Por lo tanto, la función de aptitud cuantifica el grado de coincidencia entre la predicción arrojada por cierto individuo y el incendio real. El IQR actuaría como un indicador de estancamiento y/o convergencia prematura y sería de utilidad para tomar decisiones sobre cuándo la predicción alcanzada es suficientemente buena, o bien ha alcanzado un cierto tope de calidad que no podrá mejorarse, y por consiguiente sea recomendable dar paso a una nueva población y una nueva generación. En resumen, se propone un modelo basado en el IQR para sintonizar de forma automática y dinámica el parámetro que regula la cantidad de generaciones del proceso evolutivo, a fin de evitar estancamiento y convergencia prematura. Eje: Procesamiento Distribuido y Paralelo Red de Universidades con Carreras en Informática |
description |
El Rango Intercuartil (o métrica IQR) es una medida estadística que cuantifica la dispersión de la muestra considerada, es decir, la variabilidad de la distribución de los elementos muestrales en base a algún parámetro de interés. En este proyecto, centrado en métodos que como muestra del espacio de búsqueda consideran poblaciones de individuos (muestra de elementos candidatos) se propone la utilización del rango intercuartil de los valores de aptitud de los individuos como un indicador de la tendencia a estancarse que tiene el algoritmo. El caso de estudio se refiere a la predicción de incendios forestales. Por lo tanto, la función de aptitud cuantifica el grado de coincidencia entre la predicción arrojada por cierto individuo y el incendio real. El IQR actuaría como un indicador de estancamiento y/o convergencia prematura y sería de utilidad para tomar decisiones sobre cuándo la predicción alcanzada es suficientemente buena, o bien ha alcanzado un cierto tope de calidad que no podrá mejorarse, y por consiguiente sea recomendable dar paso a una nueva población y una nueva generación. En resumen, se propone un modelo basado en el IQR para sintonizar de forma automática y dinámica el parámetro que regula la cantidad de generaciones del proceso evolutivo, a fin de evitar estancamiento y convergencia prematura. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/77244 |
url |
http://sedici.unlp.edu.ar/handle/10915/77244 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3 info:eu-repo/semantics/reference/hdl/10915/76941 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616008638136320 |
score |
13.070432 |