Hybridizing an immune artificial algorithm with epsilon constrained method
- Autores
 - Aragón, Victoria S.; Esquivel, Susana Cecilia
 - Año de publicación
 - 2012
 - Idioma
 - inglés
 - Tipo de recurso
 - documento de conferencia
 - Estado
 - versión publicada
 - Descripción
 - In this paper, we present a modified version of an algorithm inspired on the T-Cell model, it is an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed algorithm is called TCEC (T-Cell Epsilon Constrained) due to it is increased with epsilon constrained method, for solving constrained (numerical) opti- mization problems. We validate our proposed approach with a set of 36 test functions provided for the CEC 2010 competition. We indirectly compare our results with respect to a version of the differential evolution algorithm. Our results show that TCEC can found feasible solutions on almost test functions with 10 and 30 decision variables.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
 - 
            
        Ciencias Informáticas
Algorithms
Hybrid systems
Optimization
Intelligent agents
Artificial Immune System
Constrained Optimization Problem
Epsilon Constrained Method - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Universidad Nacional de La Plata
 - OAI Identificador
 - oai:sedici.unlp.edu.ar:10915/23590
 
Ver los metadatos del registro completo
| id | 
                                SEDICI_f262204cd7f456c34d44a6cca457ba69 | 
      
|---|---|
| oai_identifier_str | 
                                oai:sedici.unlp.edu.ar:10915/23590 | 
      
| network_acronym_str | 
                                SEDICI | 
      
| repository_id_str | 
                                1329 | 
      
| network_name_str | 
                                SEDICI (UNLP) | 
      
| spelling | 
                                Hybridizing an immune artificial algorithm with epsilon constrained methodAragón, Victoria S.Esquivel, Susana CeciliaCiencias InformáticasAlgorithmsHybrid systemsOptimizationIntelligent agentsArtificial Immune SystemConstrained Optimization ProblemEpsilon Constrained MethodIn this paper, we present a modified version of an algorithm inspired on the T-Cell model, it is an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed algorithm is called TCEC (T-Cell Epsilon Constrained) due to it is increased with epsilon constrained method, for solving constrained (numerical) opti- mization problems. We validate our proposed approach with a set of 36 test functions provided for the CEC 2010 competition. We indirectly compare our results with respect to a version of the differential evolution algorithm. Our results show that TCEC can found feasible solutions on almost test functions with 10 and 30 decision variables.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23590enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:01:12Zoai:sedici.unlp.edu.ar:10915/23590Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:01:13.104SEDICI (UNLP) - Universidad Nacional de La Platafalse | 
      
| dc.title.none.fl_str_mv | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| title | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| spellingShingle | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method Aragón, Victoria S. Ciencias Informáticas Algorithms Hybrid systems Optimization Intelligent agents Artificial Immune System Constrained Optimization Problem Epsilon Constrained Method  | 
      
| title_short | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| title_full | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| title_fullStr | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| title_full_unstemmed | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| title_sort | 
                                Hybridizing an immune artificial algorithm with epsilon constrained method | 
      
| dc.creator.none.fl_str_mv | 
                                Aragón, Victoria S. Esquivel, Susana Cecilia  | 
      
| author | 
                                Aragón, Victoria S. | 
      
| author_facet | 
                                Aragón, Victoria S. Esquivel, Susana Cecilia  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Esquivel, Susana Cecilia | 
      
| author2_role | 
                                author | 
      
| dc.subject.none.fl_str_mv | 
                                Ciencias Informáticas Algorithms Hybrid systems Optimization Intelligent agents Artificial Immune System Constrained Optimization Problem Epsilon Constrained Method  | 
      
| topic | 
                                Ciencias Informáticas Algorithms Hybrid systems Optimization Intelligent agents Artificial Immune System Constrained Optimization Problem Epsilon Constrained Method  | 
      
| dc.description.none.fl_txt_mv | 
                                In this paper, we present a modified version of an algorithm inspired on the T-Cell model, it is an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed algorithm is called TCEC (T-Cell Epsilon Constrained) due to it is increased with epsilon constrained method, for solving constrained (numerical) opti- mization problems. We validate our proposed approach with a set of 36 test functions provided for the CEC 2010 competition. We indirectly compare our results with respect to a version of the differential evolution algorithm. Our results show that TCEC can found feasible solutions on almost test functions with 10 and 30 decision variables. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI)  | 
      
| description | 
                                In this paper, we present a modified version of an algorithm inspired on the T-Cell model, it is an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed algorithm is called TCEC (T-Cell Epsilon Constrained) due to it is increased with epsilon constrained method, for solving constrained (numerical) opti- mization problems. We validate our proposed approach with a set of 36 test functions provided for the CEC 2010 competition. We indirectly compare our results with respect to a version of the differential evolution algorithm. Our results show that TCEC can found feasible solutions on almost test functions with 10 and 30 decision variables. | 
      
| publishDate | 
                                2012 | 
      
| dc.date.none.fl_str_mv | 
                                2012-10 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia  | 
      
| format | 
                                conferenceObject | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://sedici.unlp.edu.ar/handle/10915/23590 | 
      
| url | 
                                http://sedici.unlp.edu.ar/handle/10915/23590 | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)  | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf | 
      
| dc.source.none.fl_str_mv | 
                                reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP  | 
      
| reponame_str | 
                                SEDICI (UNLP) | 
      
| collection | 
                                SEDICI (UNLP) | 
      
| instname_str | 
                                Universidad Nacional de La Plata | 
      
| instacron_str | 
                                UNLP | 
      
| institution | 
                                UNLP | 
      
| repository.name.fl_str_mv | 
                                SEDICI (UNLP) - Universidad Nacional de La Plata | 
      
| repository.mail.fl_str_mv | 
                                alira@sedici.unlp.edu.ar | 
      
| _version_ | 
                                1847427801153536000 | 
      
| score | 
                                13.10058 |