Solving constrained optimization using a T-Cell artificial immune system

Autores
Aragón, Victoria S.; Esquivel, Susana Cecilia
Año de publicación
2007
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.
En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA), basado en el proceso que sufren las células T. El modelo propuesto se usa para resolver problemas de optimización (numéricos) restringidos. El modelo trabaja sobre tres poblaciones: Vírgenes, Efectoras y de Memoria. Cada una de ellas tiene un rol diferente. Además, el modelo adapta dinamicamente el factor de tolerancia para mejorar las capacidades de exploración del algoritmo. Se desarrolló un nuevo operador de mutación el cual incorpora conocimiento del problema. El modelo fue validado con un conjunto de funciones de prueba tomado de la literatura especializada y se compararon los resultados con respecto a Stochastic Ranking (el cual es un enfoque representativo del estado del arte en el área) y con respecto a un SIA propuesto previamente.
VIII Workshop de Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
Intelligent agents
Constrained optimization
sistema inmune artificial
ARTIFICIAL INTELLIGENCE
problemas de optimización restringidos
artificial immune system
constrained optimization problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23087

id SEDICI_074c0ea76ed0e5d346a9a497d882ef3b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23087
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Solving constrained optimization using a T-Cell artificial immune systemAragón, Victoria S.Esquivel, Susana CeciliaCiencias InformáticasInformáticaIntelligent agentsConstrained optimizationsistema inmune artificialARTIFICIAL INTELLIGENCEproblemas de optimización restringidosartificial immune systemconstrained optimization problemIn this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA), basado en el proceso que sufren las células T. El modelo propuesto se usa para resolver problemas de optimización (numéricos) restringidos. El modelo trabaja sobre tres poblaciones: Vírgenes, Efectoras y de Memoria. Cada una de ellas tiene un rol diferente. Además, el modelo adapta dinamicamente el factor de tolerancia para mejorar las capacidades de exploración del algoritmo. Se desarrolló un nuevo operador de mutación el cual incorpora conocimiento del problema. El modelo fue validado con un conjunto de funciones de prueba tomado de la literatura especializada y se compararon los resultados con respecto a Stochastic Ranking (el cual es un enfoque representativo del estado del arte en el área) y con respecto a un SIA propuesto previamente.VIII Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1396-1408http://sedici.unlp.edu.ar/handle/10915/23087enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:20Zoai:sedici.unlp.edu.ar:10915/23087Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:20.925SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Solving constrained optimization using a T-Cell artificial immune system
title Solving constrained optimization using a T-Cell artificial immune system
spellingShingle Solving constrained optimization using a T-Cell artificial immune system
Aragón, Victoria S.
Ciencias Informáticas
Informática
Intelligent agents
Constrained optimization
sistema inmune artificial
ARTIFICIAL INTELLIGENCE
problemas de optimización restringidos
artificial immune system
constrained optimization problem
title_short Solving constrained optimization using a T-Cell artificial immune system
title_full Solving constrained optimization using a T-Cell artificial immune system
title_fullStr Solving constrained optimization using a T-Cell artificial immune system
title_full_unstemmed Solving constrained optimization using a T-Cell artificial immune system
title_sort Solving constrained optimization using a T-Cell artificial immune system
dc.creator.none.fl_str_mv Aragón, Victoria S.
Esquivel, Susana Cecilia
author Aragón, Victoria S.
author_facet Aragón, Victoria S.
Esquivel, Susana Cecilia
author_role author
author2 Esquivel, Susana Cecilia
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
Intelligent agents
Constrained optimization
sistema inmune artificial
ARTIFICIAL INTELLIGENCE
problemas de optimización restringidos
artificial immune system
constrained optimization problem
topic Ciencias Informáticas
Informática
Intelligent agents
Constrained optimization
sistema inmune artificial
ARTIFICIAL INTELLIGENCE
problemas de optimización restringidos
artificial immune system
constrained optimization problem
dc.description.none.fl_txt_mv In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.
En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA), basado en el proceso que sufren las células T. El modelo propuesto se usa para resolver problemas de optimización (numéricos) restringidos. El modelo trabaja sobre tres poblaciones: Vírgenes, Efectoras y de Memoria. Cada una de ellas tiene un rol diferente. Además, el modelo adapta dinamicamente el factor de tolerancia para mejorar las capacidades de exploración del algoritmo. Se desarrolló un nuevo operador de mutación el cual incorpora conocimiento del problema. El modelo fue validado con un conjunto de funciones de prueba tomado de la literatura especializada y se compararon los resultados con respecto a Stochastic Ranking (el cual es un enfoque representativo del estado del arte en el área) y con respecto a un SIA propuesto previamente.
VIII Workshop de Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23087
url http://sedici.unlp.edu.ar/handle/10915/23087
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1396-1408
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615811890675712
score 13.070432