Optimizing constrained problems through a T-Cell artificial immune system
- Autores
 - Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos
 - Año de publicación
 - 2008
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - In this paper, we present a new model of an artificial immune system (AIS), based on the process that suffers the T-Cell, it is called T-Cell Model. It is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-theart in the area), with respect to an AIS previously proposed and a self-organizing migrating genetic algorithm for constrained optimization (C-SOMGA).
Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
Fil: Coello Coello, Carlos. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México - Materia
 - 
            
        ARTIFICIAL IMMUNE SYSTEMS
CONSTRAINED OPTIMIZATION PROBLEMS - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/159660
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_7167727bc24eacf090911545e13ae7a7 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/159660 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Optimizing constrained problems through a T-Cell artificial immune systemAragon, Victoria SoledadEsquivel, Susana CeciliaCoello Coello, CarlosARTIFICIAL IMMUNE SYSTEMSCONSTRAINED OPTIMIZATION PROBLEMShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, we present a new model of an artificial immune system (AIS), based on the process that suffers the T-Cell, it is called T-Cell Model. It is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-theart in the area), with respect to an AIS previously proposed and a self-organizing migrating genetic algorithm for constrained optimization (C-SOMGA).Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; ArgentinaFil: Coello Coello, Carlos. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; MéxicoUniversidad Nacional de La Plata. Facultad de Informática2008-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/159660Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos; Optimizing constrained problems through a T-Cell artificial immune system; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 8; 3; 10-2008; 158-1651666-60461666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/9640info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:28:25Zoai:ri.conicet.gov.ar:11336/159660instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:28:26.22CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| title | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| spellingShingle | 
                                Optimizing constrained problems through a T-Cell artificial immune system Aragon, Victoria Soledad ARTIFICIAL IMMUNE SYSTEMS CONSTRAINED OPTIMIZATION PROBLEMS  | 
      
| title_short | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| title_full | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| title_fullStr | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| title_full_unstemmed | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| title_sort | 
                                Optimizing constrained problems through a T-Cell artificial immune system | 
      
| dc.creator.none.fl_str_mv | 
                                Aragon, Victoria Soledad Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author | 
                                Aragon, Victoria Soledad | 
      
| author_facet | 
                                Aragon, Victoria Soledad Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                ARTIFICIAL IMMUNE SYSTEMS CONSTRAINED OPTIMIZATION PROBLEMS  | 
      
| topic | 
                                ARTIFICIAL IMMUNE SYSTEMS CONSTRAINED OPTIMIZATION PROBLEMS  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                In this paper, we present a new model of an artificial immune system (AIS), based on the process that suffers the T-Cell, it is called T-Cell Model. It is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-theart in the area), with respect to an AIS previously proposed and a self-organizing migrating genetic algorithm for constrained optimization (C-SOMGA). Fil: Aragon, Victoria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Esquivel, Susana Cecilia. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina Fil: Coello Coello, Carlos. Instituto Politécnico Nacional. Centro de Investigación y de Estudios Avanzados. Departamento de Física; México  | 
      
| description | 
                                In this paper, we present a new model of an artificial immune system (AIS), based on the process that suffers the T-Cell, it is called T-Cell Model. It is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-theart in the area), with respect to an AIS previously proposed and a self-organizing migrating genetic algorithm for constrained optimization (C-SOMGA). | 
      
| publishDate | 
                                2008 | 
      
| dc.date.none.fl_str_mv | 
                                2008-10 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/159660 Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos; Optimizing constrained problems through a T-Cell artificial immune system; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 8; 3; 10-2008; 158-165 1666-6046 1666-6038 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/159660 | 
      
| identifier_str_mv | 
                                Aragon, Victoria Soledad; Esquivel, Susana Cecilia; Coello Coello, Carlos; Optimizing constrained problems through a T-Cell artificial immune system; Universidad Nacional de La Plata. Facultad de Informática; Journal of Computer Science & Technology; 8; 3; 10-2008; 158-165 1666-6046 1666-6038 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/9640 | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Universidad Nacional de La Plata. Facultad de Informática | 
      
| publisher.none.fl_str_mv | 
                                Universidad Nacional de La Plata. Facultad de Informática | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847427215111749632 | 
      
| score | 
                                12.589754 |