Evaluation of Causal Sentences in Automated Summaries

Autores
Puente, C.; Villa Monte, Augusto; Lanzarini, Laura Cristina; Sobrino, A.; Olivas, J. A.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
Instituto de Investigación en Informática
Materia
Informática
Causality
Causal sentences
Automatic summaries
Sentence scoring metrics
Soft Computing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131857

id SEDICI_f1536f98a83c115e8432db8edf0971c0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131857
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evaluation of Causal Sentences in Automated SummariesPuente, C.Villa Monte, AugustoLanzarini, Laura CristinaSobrino, A.Olivas, J. A.InformáticaCausalityCausal sentencesAutomatic summariesSentence scoring metricsSoft ComputingThis paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.Instituto de Investigación en Informática2017-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/131857enginfo:eu-repo/semantics/altIdentifier/isbn/978-1-5090-6034-4info:eu-repo/semantics/altIdentifier/issn/1558-4739info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:33:11Zoai:sedici.unlp.edu.ar:10915/131857Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:33:11.65SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evaluation of Causal Sentences in Automated Summaries
title Evaluation of Causal Sentences in Automated Summaries
spellingShingle Evaluation of Causal Sentences in Automated Summaries
Puente, C.
Informática
Causality
Causal sentences
Automatic summaries
Sentence scoring metrics
Soft Computing
title_short Evaluation of Causal Sentences in Automated Summaries
title_full Evaluation of Causal Sentences in Automated Summaries
title_fullStr Evaluation of Causal Sentences in Automated Summaries
title_full_unstemmed Evaluation of Causal Sentences in Automated Summaries
title_sort Evaluation of Causal Sentences in Automated Summaries
dc.creator.none.fl_str_mv Puente, C.
Villa Monte, Augusto
Lanzarini, Laura Cristina
Sobrino, A.
Olivas, J. A.
author Puente, C.
author_facet Puente, C.
Villa Monte, Augusto
Lanzarini, Laura Cristina
Sobrino, A.
Olivas, J. A.
author_role author
author2 Villa Monte, Augusto
Lanzarini, Laura Cristina
Sobrino, A.
Olivas, J. A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Informática
Causality
Causal sentences
Automatic summaries
Sentence scoring metrics
Soft Computing
topic Informática
Causality
Causal sentences
Automatic summaries
Sentence scoring metrics
Soft Computing
dc.description.none.fl_txt_mv This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
Instituto de Investigación en Informática
description This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
publishDate 2017
dc.date.none.fl_str_mv 2017-07
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131857
url http://sedici.unlp.edu.ar/handle/10915/131857
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-1-5090-6034-4
info:eu-repo/semantics/altIdentifier/issn/1558-4739
info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616211264962560
score 13.070432