Evaluation of Causal Sentences in Automated Summaries
- Autores
- Puente, C.; Villa Monte, Augusto; Lanzarini, Laura Cristina; Sobrino, A.; Olivas, J. A.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
Instituto de Investigación en Informática - Materia
-
Informática
Causality
Causal sentences
Automatic summaries
Sentence scoring metrics
Soft Computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/131857
Ver los metadatos del registro completo
id |
SEDICI_f1536f98a83c115e8432db8edf0971c0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/131857 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evaluation of Causal Sentences in Automated SummariesPuente, C.Villa Monte, AugustoLanzarini, Laura CristinaSobrino, A.Olivas, J. A.InformáticaCausalityCausal sentencesAutomatic summariesSentence scoring metricsSoft ComputingThis paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.Instituto de Investigación en Informática2017-07info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/131857enginfo:eu-repo/semantics/altIdentifier/isbn/978-1-5090-6034-4info:eu-repo/semantics/altIdentifier/issn/1558-4739info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:33:11Zoai:sedici.unlp.edu.ar:10915/131857Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:33:11.65SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evaluation of Causal Sentences in Automated Summaries |
title |
Evaluation of Causal Sentences in Automated Summaries |
spellingShingle |
Evaluation of Causal Sentences in Automated Summaries Puente, C. Informática Causality Causal sentences Automatic summaries Sentence scoring metrics Soft Computing |
title_short |
Evaluation of Causal Sentences in Automated Summaries |
title_full |
Evaluation of Causal Sentences in Automated Summaries |
title_fullStr |
Evaluation of Causal Sentences in Automated Summaries |
title_full_unstemmed |
Evaluation of Causal Sentences in Automated Summaries |
title_sort |
Evaluation of Causal Sentences in Automated Summaries |
dc.creator.none.fl_str_mv |
Puente, C. Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino, A. Olivas, J. A. |
author |
Puente, C. |
author_facet |
Puente, C. Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino, A. Olivas, J. A. |
author_role |
author |
author2 |
Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino, A. Olivas, J. A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Informática Causality Causal sentences Automatic summaries Sentence scoring metrics Soft Computing |
topic |
Informática Causality Causal sentences Automatic summaries Sentence scoring metrics Soft Computing |
dc.description.none.fl_txt_mv |
This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined. Instituto de Investigación en Informática |
description |
This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/131857 |
url |
http://sedici.unlp.edu.ar/handle/10915/131857 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-1-5090-6034-4 info:eu-repo/semantics/altIdentifier/issn/1558-4739 info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616211264962560 |
score |
13.070432 |