Evaluation of Causal Sentences in Automated Summaries
- Autores
- Puente Águeda, Cristina; Villa Monte, Augusto; Lanzarini, Laura Cristina; Sobrino Cerdeiriña, Alejandro; Olivas Varela, José Ángel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión enviada
- Descripción
- This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.
- Materia
-
Ingenierías y Tecnologías
causality
causal sentences
automatic summaries
sentence scoring metrics
Soft Computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/8593
Ver los metadatos del registro completo
| id |
CICBA_8f517b93d220d6775eab7bff854266aa |
|---|---|
| oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/8593 |
| network_acronym_str |
CICBA |
| repository_id_str |
9441 |
| network_name_str |
CIC Digital (CICBA) |
| spelling |
Evaluation of Causal Sentences in Automated SummariesPuente Águeda, CristinaVilla Monte, AugustoLanzarini, Laura CristinaSobrino Cerdeiriña, AlejandroOlivas Varela, José ÁngelIngenierías y Tecnologíascausalitycausal sentencesautomatic summariessentence scoring metricsSoft ComputingThis paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined.2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8593enginfo:eu-repo/semantics/altIdentifier/hdl/11531/22683info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-10-23T11:14:43Zoai:digital.cic.gba.gob.ar:11746/8593Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-10-23 11:14:44.095CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
| dc.title.none.fl_str_mv |
Evaluation of Causal Sentences in Automated Summaries |
| title |
Evaluation of Causal Sentences in Automated Summaries |
| spellingShingle |
Evaluation of Causal Sentences in Automated Summaries Puente Águeda, Cristina Ingenierías y Tecnologías causality causal sentences automatic summaries sentence scoring metrics Soft Computing |
| title_short |
Evaluation of Causal Sentences in Automated Summaries |
| title_full |
Evaluation of Causal Sentences in Automated Summaries |
| title_fullStr |
Evaluation of Causal Sentences in Automated Summaries |
| title_full_unstemmed |
Evaluation of Causal Sentences in Automated Summaries |
| title_sort |
Evaluation of Causal Sentences in Automated Summaries |
| dc.creator.none.fl_str_mv |
Puente Águeda, Cristina Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino Cerdeiriña, Alejandro Olivas Varela, José Ángel |
| author |
Puente Águeda, Cristina |
| author_facet |
Puente Águeda, Cristina Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino Cerdeiriña, Alejandro Olivas Varela, José Ángel |
| author_role |
author |
| author2 |
Villa Monte, Augusto Lanzarini, Laura Cristina Sobrino Cerdeiriña, Alejandro Olivas Varela, José Ángel |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ingenierías y Tecnologías causality causal sentences automatic summaries sentence scoring metrics Soft Computing |
| topic |
Ingenierías y Tecnologías causality causal sentences automatic summaries sentence scoring metrics Soft Computing |
| dc.description.none.fl_txt_mv |
This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined. |
| description |
This paper presents an experiment to show the importance of causal sentences in summaries. Presumably, causal sentences hold relevant information and thus summaries should contain them. We perform an experiment to refute or validate this hypothesis. We have selected 28 medical documents to extract and analyze causal and conditional sentences from medical texts. Once retrieved, classic metrics are used to determine the relevance of the causal content among all the sentences in the document and, so, to evaluate if they are important enough to make a better summary. Finally, a comparison table to explore the results is showed and some conclusions are outlined. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
submittedVersion |
| dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/8593 |
| url |
https://digital.cic.gba.gob.ar/handle/11746/8593 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/hdl/11531/22683 info:eu-repo/semantics/altIdentifier/doi/10.1109/FUZZ-IEEE.2017.8015666 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
| reponame_str |
CIC Digital (CICBA) |
| collection |
CIC Digital (CICBA) |
| instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| instacron_str |
CICBA |
| institution |
CICBA |
| repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
| repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
| _version_ |
1846783909665177600 |
| score |
12.982451 |