A Weighted K-means Algorithm applied to Brain Tissue Classification
- Autores
- Abras, Guillermo N.; Ballarín, Virginia Laura
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.
Facultad de Informática - Materia
-
Ciencias Informáticas
PATTERN RECOGNITION
imagen
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9583
Ver los metadatos del registro completo
id |
SEDICI_e8ecba1e1117a3e60af8a555abe865e5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9583 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A Weighted K-means Algorithm applied to Brain Tissue ClassificationAbras, Guillermo N.Ballarín, Virginia LauraCiencias InformáticasPATTERN RECOGNITIONimagenAlgorithmsTissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.Facultad de Informática2005-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf121-126http://sedici.unlp.edu.ar/handle/10915/9583enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct05-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9583Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.021SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
title |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
spellingShingle |
A Weighted K-means Algorithm applied to Brain Tissue Classification Abras, Guillermo N. Ciencias Informáticas PATTERN RECOGNITION imagen Algorithms |
title_short |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
title_full |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
title_fullStr |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
title_full_unstemmed |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
title_sort |
A Weighted K-means Algorithm applied to Brain Tissue Classification |
dc.creator.none.fl_str_mv |
Abras, Guillermo N. Ballarín, Virginia Laura |
author |
Abras, Guillermo N. |
author_facet |
Abras, Guillermo N. Ballarín, Virginia Laura |
author_role |
author |
author2 |
Ballarín, Virginia Laura |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas PATTERN RECOGNITION imagen Algorithms |
topic |
Ciencias Informáticas PATTERN RECOGNITION imagen Algorithms |
dc.description.none.fl_txt_mv |
Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images. Facultad de Informática |
description |
Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9583 |
url |
http://sedici.unlp.edu.ar/handle/10915/9583 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct05-2.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 121-126 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758348288000 |
score |
13.070432 |