A Weighted K-means Algorithm applied to Brain Tissue Classification

Autores
Abras, Guillermo N.; Ballarín, Virginia Laura
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.
Facultad de Informática
Materia
Ciencias Informáticas
PATTERN RECOGNITION
imagen
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9583

id SEDICI_e8ecba1e1117a3e60af8a555abe865e5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9583
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Weighted K-means Algorithm applied to Brain Tissue ClassificationAbras, Guillermo N.Ballarín, Virginia LauraCiencias InformáticasPATTERN RECOGNITIONimagenAlgorithmsTissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.Facultad de Informática2005-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf121-126http://sedici.unlp.edu.ar/handle/10915/9583enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct05-2.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9583Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.021SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Weighted K-means Algorithm applied to Brain Tissue Classification
title A Weighted K-means Algorithm applied to Brain Tissue Classification
spellingShingle A Weighted K-means Algorithm applied to Brain Tissue Classification
Abras, Guillermo N.
Ciencias Informáticas
PATTERN RECOGNITION
imagen
Algorithms
title_short A Weighted K-means Algorithm applied to Brain Tissue Classification
title_full A Weighted K-means Algorithm applied to Brain Tissue Classification
title_fullStr A Weighted K-means Algorithm applied to Brain Tissue Classification
title_full_unstemmed A Weighted K-means Algorithm applied to Brain Tissue Classification
title_sort A Weighted K-means Algorithm applied to Brain Tissue Classification
dc.creator.none.fl_str_mv Abras, Guillermo N.
Ballarín, Virginia Laura
author Abras, Guillermo N.
author_facet Abras, Guillermo N.
Ballarín, Virginia Laura
author_role author
author2 Ballarín, Virginia Laura
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
PATTERN RECOGNITION
imagen
Algorithms
topic Ciencias Informáticas
PATTERN RECOGNITION
imagen
Algorithms
dc.description.none.fl_txt_mv Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.
Facultad de Informática
description Tissue classification in Magnetic Resonance (MR) brain images is an important issue in the analysis of several brain dementias. This paper presents a modification of the classical K-means algorithm taking into account the number of times specific features appear in an image, employing, for that purpose, a weighted mean to calculate the centroid of every cluster. Pattern Recognition techniques allow grouping pixels based on features similarity. In this paper, multispectral gray-level intensity MR brain images are used. T1, T2 and PD-weighted images provide different and complementary information about the tissues. Segmentation is performed in order to classify each pixel of the resulting image according to four possible classes: cerebro-spinal fluid (CSF), white matter (WM), gray matter (GM) and background. T1, T2 and PD-weighted images are used as patterns. The proposed algorithm weighs the number of pixels corresponding to each set of gray levels in the feature vector. As a consequence, an automatic segmentation of the brain tissue is obtained. The algorithm provides faster results if compared with the traditional K-means, thereby retrieving complementary information from the images.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9583
url http://sedici.unlp.edu.ar/handle/10915/9583
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct05-2.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
121-126
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758348288000
score 13.070432