Characterizing defeat in observation-based defeasible logic programming
- Autores
- Capobianco, Marcela; Chesñevar, Carlos Iván
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work we analyze the problem of incorporating specificity to characterize defeat in a particular argumentative framework, called observation based defeasible logic programming (ODeLP) [1]. Eficiency is an important issues in ODeLP, since this framework has been de ned for representing the knowledge of intelligent agents in real world applications. Computing specificity using domain knowledge is a demanding operation. Thus, have devised a new version of this criterion, that optimizes the computation of the defeat relation.
Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computación
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
Logic Programming
characterizing defeat
observation-based - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21248
Ver los metadatos del registro completo
id |
SEDICI_e6b00156098d62cd27f55352432ae639 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21248 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Characterizing defeat in observation-based defeasible logic programmingCapobianco, MarcelaChesñevar, Carlos IvánCiencias InformáticasARTIFICIAL INTELLIGENCELogic Programmingcharacterizing defeatobservation-basedIn this work we analyze the problem of incorporating specificity to characterize defeat in a particular argumentative framework, called observation based defeasible logic programming (ODeLP) [1]. Eficiency is an important issues in ODeLP, since this framework has been de ned for representing the knowledge of intelligent agents in real world applications. Computing specificity using domain knowledge is a demanding operation. Thus, have devised a new version of this criterion, that optimizes the computation of the defeat relation.Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computaciónRed de Universidades con Carreras en Informática (RedUNCI)2004-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf348-353http://sedici.unlp.edu.ar/handle/10915/21248enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:25Zoai:sedici.unlp.edu.ar:10915/21248Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:25.746SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Characterizing defeat in observation-based defeasible logic programming |
title |
Characterizing defeat in observation-based defeasible logic programming |
spellingShingle |
Characterizing defeat in observation-based defeasible logic programming Capobianco, Marcela Ciencias Informáticas ARTIFICIAL INTELLIGENCE Logic Programming characterizing defeat observation-based |
title_short |
Characterizing defeat in observation-based defeasible logic programming |
title_full |
Characterizing defeat in observation-based defeasible logic programming |
title_fullStr |
Characterizing defeat in observation-based defeasible logic programming |
title_full_unstemmed |
Characterizing defeat in observation-based defeasible logic programming |
title_sort |
Characterizing defeat in observation-based defeasible logic programming |
dc.creator.none.fl_str_mv |
Capobianco, Marcela Chesñevar, Carlos Iván |
author |
Capobianco, Marcela |
author_facet |
Capobianco, Marcela Chesñevar, Carlos Iván |
author_role |
author |
author2 |
Chesñevar, Carlos Iván |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Logic Programming characterizing defeat observation-based |
topic |
Ciencias Informáticas ARTIFICIAL INTELLIGENCE Logic Programming characterizing defeat observation-based |
dc.description.none.fl_txt_mv |
In this work we analyze the problem of incorporating specificity to characterize defeat in a particular argumentative framework, called observation based defeasible logic programming (ODeLP) [1]. Eficiency is an important issues in ODeLP, since this framework has been de ned for representing the knowledge of intelligent agents in real world applications. Computing specificity using domain knowledge is a demanding operation. Thus, have devised a new version of this criterion, that optimizes the computation of the defeat relation. Eje: Inteligencia artificial distribuida, aspectos teóricos de la inteligencia artificial y teoría de computación Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this work we analyze the problem of incorporating specificity to characterize defeat in a particular argumentative framework, called observation based defeasible logic programming (ODeLP) [1]. Eficiency is an important issues in ODeLP, since this framework has been de ned for representing the knowledge of intelligent agents in real world applications. Computing specificity using domain knowledge is a demanding operation. Thus, have devised a new version of this criterion, that optimizes the computation of the defeat relation. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21248 |
url |
http://sedici.unlp.edu.ar/handle/10915/21248 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 348-353 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260111410593792 |
score |
13.13397 |