A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

Autores
García, Javier Gonzalo; Roncagliolo, Pedro Agustín; Muravchik, Carlos Horacio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
Facultad de Ingeniería
Materia
Ingeniería
Bayesian estimation, carrier phase ambiguity resolution, GNSS, integer parameter estimation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/76906

id SEDICI_e4654095cef28202c05e625ef8dfba10
oai_identifier_str oai:sedici.unlp.edu.ar:10915/76906
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision PositioningGarcía, Javier GonzaloRoncagliolo, Pedro AgustínMuravchik, Carlos HoracioIngenieríaBayesian estimation, carrier phase ambiguity resolution, GNSS, integer parameter estimationA novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.Facultad de Ingeniería2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf923-933http://sedici.unlp.edu.ar/handle/10915/76906enginfo:eu-repo/semantics/altIdentifier/issn/1053-587Xinfo:eu-repo/semantics/altIdentifier/hdl/11746/2211info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2500195info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nd/4.0/Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:56:25Zoai:sedici.unlp.edu.ar:10915/76906Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:56:25.576SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
spellingShingle A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
García, Javier Gonzalo
Ingeniería
Bayesian estimation, carrier phase ambiguity resolution, GNSS, integer parameter estimation
title_short A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_full A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_fullStr A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_full_unstemmed A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
title_sort A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning
dc.creator.none.fl_str_mv García, Javier Gonzalo
Roncagliolo, Pedro Agustín
Muravchik, Carlos Horacio
author García, Javier Gonzalo
author_facet García, Javier Gonzalo
Roncagliolo, Pedro Agustín
Muravchik, Carlos Horacio
author_role author
author2 Roncagliolo, Pedro Agustín
Muravchik, Carlos Horacio
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería
Bayesian estimation, carrier phase ambiguity resolution, GNSS, integer parameter estimation
topic Ingeniería
Bayesian estimation, carrier phase ambiguity resolution, GNSS, integer parameter estimation
dc.description.none.fl_txt_mv A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
Facultad de Ingeniería
description A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/76906
url http://sedici.unlp.edu.ar/handle/10915/76906
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1053-587X
info:eu-repo/semantics/altIdentifier/hdl/11746/2211
info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2015.2500195
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nd/4.0/
Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nd/4.0/
Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
dc.format.none.fl_str_mv application/pdf
923-933
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532413675765760
score 13.001348