Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad
- Autores
- Santa María, Cristóbal; Soria, Marcelo A.
- Año de publicación
- 2012
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Enmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimientos solo estadísticos. A partir del agrupamiento jerárquico de secuencias de la muestra en diferentes “clusters” que representan taxones distintos seleccionados por umbral de disimilaridad, es posible construir un modelo experimental y aplicar sobre él algoritmos de recuento de especies, o más generalmente de taxones (ARE ), que elevan a niveles compatibles con la apreciación biológica la riqueza subestimada por los procedimientos estándar. Se desarrolla aquí en detalle un algoritmo alternativo a dichos procedimientos ARE que incorpora el concepto de cobertura muestral y proporciona así estabilidad a la simulación asociada. Se procesan dos conjuntos muestrales y se obtienen conclusiones sobre el desempeño del algoritmo con cobertura muestral.
Eje: Base de datos y minería de datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Data mining
cluster
Biodiversidad
riqueza
diversidad
simulación
cobertura - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18603
Ver los metadatos del registro completo
id |
SEDICI_e26a33cd338178de4f7fc5c6c3602466 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18603 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidadSanta María, CristóbalSoria, Marcelo A.Ciencias InformáticasData miningclusterBiodiversidadriquezadiversidadsimulacióncoberturaEnmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimientos solo estadísticos. A partir del agrupamiento jerárquico de secuencias de la muestra en diferentes “clusters” que representan taxones distintos seleccionados por umbral de disimilaridad, es posible construir un modelo experimental y aplicar sobre él algoritmos de recuento de especies, o más generalmente de taxones (ARE ), que elevan a niveles compatibles con la apreciación biológica la riqueza subestimada por los procedimientos estándar. Se desarrolla aquí en detalle un algoritmo alternativo a dichos procedimientos ARE que incorpora el concepto de cobertura muestral y proporciona así estabilidad a la simulación asociada. Se procesan dos conjuntos muestrales y se obtienen conclusiones sobre el desempeño del algoritmo con cobertura muestral.Eje: Base de datos y minería de datosRed de Universidades con Carreras en Informática (RedUNCI)2012info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf202-206http://sedici.unlp.edu.ar/handle/10915/18603spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-766-082-5info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:32Zoai:sedici.unlp.edu.ar:10915/18603Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:32.834SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
title |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
spellingShingle |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad Santa María, Cristóbal Ciencias Informáticas Data mining cluster Biodiversidad riqueza diversidad simulación cobertura |
title_short |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
title_full |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
title_fullStr |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
title_full_unstemmed |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
title_sort |
Algoritmo con cobertura muestral en data mining aplicado al estudio de la biodiversidad |
dc.creator.none.fl_str_mv |
Santa María, Cristóbal Soria, Marcelo A. |
author |
Santa María, Cristóbal |
author_facet |
Santa María, Cristóbal Soria, Marcelo A. |
author_role |
author |
author2 |
Soria, Marcelo A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Data mining cluster Biodiversidad riqueza diversidad simulación cobertura |
topic |
Ciencias Informáticas Data mining cluster Biodiversidad riqueza diversidad simulación cobertura |
dc.description.none.fl_txt_mv |
Enmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimientos solo estadísticos. A partir del agrupamiento jerárquico de secuencias de la muestra en diferentes “clusters” que representan taxones distintos seleccionados por umbral de disimilaridad, es posible construir un modelo experimental y aplicar sobre él algoritmos de recuento de especies, o más generalmente de taxones (ARE ), que elevan a niveles compatibles con la apreciación biológica la riqueza subestimada por los procedimientos estándar. Se desarrolla aquí en detalle un algoritmo alternativo a dichos procedimientos ARE que incorpora el concepto de cobertura muestral y proporciona así estabilidad a la simulación asociada. Se procesan dos conjuntos muestrales y se obtienen conclusiones sobre el desempeño del algoritmo con cobertura muestral. Eje: Base de datos y minería de datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Enmarcadas en la biología computacional, la aplicación conjunta de técnicas de Data Mining y Simulación a secuencias muestrales de ADN con el objeto de evaluar la riqueza, principal parámetro de biodiversidad, ha producido resultados que mejoran las estimaciones usualmente realizadas por procedimientos solo estadísticos. A partir del agrupamiento jerárquico de secuencias de la muestra en diferentes “clusters” que representan taxones distintos seleccionados por umbral de disimilaridad, es posible construir un modelo experimental y aplicar sobre él algoritmos de recuento de especies, o más generalmente de taxones (ARE ), que elevan a niveles compatibles con la apreciación biológica la riqueza subestimada por los procedimientos estándar. Se desarrolla aquí en detalle un algoritmo alternativo a dichos procedimientos ARE que incorpora el concepto de cobertura muestral y proporciona así estabilidad a la simulación asociada. Se procesan dos conjuntos muestrales y se obtienen conclusiones sobre el desempeño del algoritmo con cobertura muestral. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18603 |
url |
http://sedici.unlp.edu.ar/handle/10915/18603 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-766-082-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 202-206 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615791637430272 |
score |
13.070432 |