Minería de datos sobre comunidades biológicas
- Autores
- Santa María, Cristóbal; Soria, Marcelo A.
- Año de publicación
- 2010
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La práctica científica y tecnológica suele reunir conceptos originados en diversas disciplinas para desarrollar perfiles y potenciales usos que adquieren cierta unidad e independencia conceptual. Tal es el caso de data mining que a partir de la tecnología de las bases de datos incorporó paulatinamente ideas provenientes de la inteligencia artificial y de la estadística para clasificar y/o predecir resultados sobre un muy variado conjunto de sistemas. El proyecto de investigación aquí presentado estudia técnicas bioinformáticas con las que se trabaja sobre comunidades microbiológicas de suelos. Tales métodos tienen el propósito de clasificar los organismos que forman parte del medio y predecir su diversidad. El análisis parte de la representación computacional del ADN que codifica la información genética y establece, con datos obtenidos a partir de muestras, las propiedades del conjunto de microorganismos que conforman esa comunidad. Este tipo de estudio, denominado metagenómica, permite agrupar los distintos tipos de organismos en clusters que representan alguna categoría taxonómica como especie, género, familia etc. También es posible a partir de estos agrupamientos realizar estimaciones de biodiversidad que proporcionen información sobre la potencialidad y riqueza del suelo. El proyecto de investigación tiene dos objetivos. Por un lado establecer un modelo bioinformático markoviano para la comparación de secuencias de ADN a efecto de clasificación, y por otro presentar un análisis crítico de los procedimientos de data mining aplicados a la evaluación de la riqueza en distintos ecosistemas.
Eje: Bases de datos y minería de datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Data mining
base de datos
metagenómica
cluster
predicción
adn
modelo markoviano
biodiversidad - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/19459
Ver los metadatos del registro completo
id |
SEDICI_151d9465fd971f24c7beb1372a0d3230 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/19459 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Minería de datos sobre comunidades biológicasSanta María, CristóbalSoria, Marcelo A.Ciencias InformáticasData miningbase de datosmetagenómicaclusterpredicciónadnmodelo markovianobiodiversidadLa práctica científica y tecnológica suele reunir conceptos originados en diversas disciplinas para desarrollar perfiles y potenciales usos que adquieren cierta unidad e independencia conceptual. Tal es el caso de data mining que a partir de la tecnología de las bases de datos incorporó paulatinamente ideas provenientes de la inteligencia artificial y de la estadística para clasificar y/o predecir resultados sobre un muy variado conjunto de sistemas. El proyecto de investigación aquí presentado estudia técnicas bioinformáticas con las que se trabaja sobre comunidades microbiológicas de suelos. Tales métodos tienen el propósito de clasificar los organismos que forman parte del medio y predecir su diversidad. El análisis parte de la representación computacional del ADN que codifica la información genética y establece, con datos obtenidos a partir de muestras, las propiedades del conjunto de microorganismos que conforman esa comunidad. Este tipo de estudio, denominado metagenómica, permite agrupar los distintos tipos de organismos en clusters que representan alguna categoría taxonómica como especie, género, familia etc. También es posible a partir de estos agrupamientos realizar estimaciones de biodiversidad que proporcionen información sobre la potencialidad y riqueza del suelo. El proyecto de investigación tiene dos objetivos. Por un lado establecer un modelo bioinformático markoviano para la comparación de secuencias de ADN a efecto de clasificación, y por otro presentar un análisis crítico de los procedimientos de data mining aplicados a la evaluación de la riqueza en distintos ecosistemas.Eje: Bases de datos y minería de datosRed de Universidades con Carreras en Informática (RedUNCI)2010-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf148-156http://sedici.unlp.edu.ar/handle/10915/19459spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:55Zoai:sedici.unlp.edu.ar:10915/19459Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:55.683SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Minería de datos sobre comunidades biológicas |
title |
Minería de datos sobre comunidades biológicas |
spellingShingle |
Minería de datos sobre comunidades biológicas Santa María, Cristóbal Ciencias Informáticas Data mining base de datos metagenómica cluster predicción adn modelo markoviano biodiversidad |
title_short |
Minería de datos sobre comunidades biológicas |
title_full |
Minería de datos sobre comunidades biológicas |
title_fullStr |
Minería de datos sobre comunidades biológicas |
title_full_unstemmed |
Minería de datos sobre comunidades biológicas |
title_sort |
Minería de datos sobre comunidades biológicas |
dc.creator.none.fl_str_mv |
Santa María, Cristóbal Soria, Marcelo A. |
author |
Santa María, Cristóbal |
author_facet |
Santa María, Cristóbal Soria, Marcelo A. |
author_role |
author |
author2 |
Soria, Marcelo A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Data mining base de datos metagenómica cluster predicción adn modelo markoviano biodiversidad |
topic |
Ciencias Informáticas Data mining base de datos metagenómica cluster predicción adn modelo markoviano biodiversidad |
dc.description.none.fl_txt_mv |
La práctica científica y tecnológica suele reunir conceptos originados en diversas disciplinas para desarrollar perfiles y potenciales usos que adquieren cierta unidad e independencia conceptual. Tal es el caso de data mining que a partir de la tecnología de las bases de datos incorporó paulatinamente ideas provenientes de la inteligencia artificial y de la estadística para clasificar y/o predecir resultados sobre un muy variado conjunto de sistemas. El proyecto de investigación aquí presentado estudia técnicas bioinformáticas con las que se trabaja sobre comunidades microbiológicas de suelos. Tales métodos tienen el propósito de clasificar los organismos que forman parte del medio y predecir su diversidad. El análisis parte de la representación computacional del ADN que codifica la información genética y establece, con datos obtenidos a partir de muestras, las propiedades del conjunto de microorganismos que conforman esa comunidad. Este tipo de estudio, denominado metagenómica, permite agrupar los distintos tipos de organismos en clusters que representan alguna categoría taxonómica como especie, género, familia etc. También es posible a partir de estos agrupamientos realizar estimaciones de biodiversidad que proporcionen información sobre la potencialidad y riqueza del suelo. El proyecto de investigación tiene dos objetivos. Por un lado establecer un modelo bioinformático markoviano para la comparación de secuencias de ADN a efecto de clasificación, y por otro presentar un análisis crítico de los procedimientos de data mining aplicados a la evaluación de la riqueza en distintos ecosistemas. Eje: Bases de datos y minería de datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
La práctica científica y tecnológica suele reunir conceptos originados en diversas disciplinas para desarrollar perfiles y potenciales usos que adquieren cierta unidad e independencia conceptual. Tal es el caso de data mining que a partir de la tecnología de las bases de datos incorporó paulatinamente ideas provenientes de la inteligencia artificial y de la estadística para clasificar y/o predecir resultados sobre un muy variado conjunto de sistemas. El proyecto de investigación aquí presentado estudia técnicas bioinformáticas con las que se trabaja sobre comunidades microbiológicas de suelos. Tales métodos tienen el propósito de clasificar los organismos que forman parte del medio y predecir su diversidad. El análisis parte de la representación computacional del ADN que codifica la información genética y establece, con datos obtenidos a partir de muestras, las propiedades del conjunto de microorganismos que conforman esa comunidad. Este tipo de estudio, denominado metagenómica, permite agrupar los distintos tipos de organismos en clusters que representan alguna categoría taxonómica como especie, género, familia etc. También es posible a partir de estos agrupamientos realizar estimaciones de biodiversidad que proporcionen información sobre la potencialidad y riqueza del suelo. El proyecto de investigación tiene dos objetivos. Por un lado establecer un modelo bioinformático markoviano para la comparación de secuencias de ADN a efecto de clasificación, y por otro presentar un análisis crítico de los procedimientos de data mining aplicados a la evaluación de la riqueza en distintos ecosistemas. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/19459 |
url |
http://sedici.unlp.edu.ar/handle/10915/19459 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 148-156 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615795482558464 |
score |
13.070432 |