Gloss-free Argentinian Sign Language Translation with pose-based deep learning models
- Autores
- Dal Bianco, Pedro Alejandro; Ríos, Gastón Gustavo; Hasperué, Waldo; Stanchi, Oscar Agustín; Ronchetti, Franco; Quiroga, Facundo Manuel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Sign Language Translation
Pose Estimation
Sign Language Datasets
Deep Learning
Gloss-free - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/176192
Ver los metadatos del registro completo
id |
SEDICI_e12b68460ef0d43b4e80ce470dace89f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/176192 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning modelsDal Bianco, Pedro AlejandroRíos, Gastón GustavoHasperué, WaldoStanchi, Oscar AgustínRonchetti, FrancoQuiroga, Facundo ManuelCiencias InformáticasSign Language TranslationPose EstimationSign Language DatasetsDeep LearningGloss-freeThe main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times.Red de Universidades con Carreras en Informática2024-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf64-71http://sedici.unlp.edu.ar/handle/10915/176192enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5info:eu-repo/semantics/reference/hdl/10915/172755info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:50:15Zoai:sedici.unlp.edu.ar:10915/176192Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:50:15.991SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
title |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
spellingShingle |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models Dal Bianco, Pedro Alejandro Ciencias Informáticas Sign Language Translation Pose Estimation Sign Language Datasets Deep Learning Gloss-free |
title_short |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
title_full |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
title_fullStr |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
title_full_unstemmed |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
title_sort |
Gloss-free Argentinian Sign Language Translation with pose-based deep learning models |
dc.creator.none.fl_str_mv |
Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Stanchi, Oscar Agustín Ronchetti, Franco Quiroga, Facundo Manuel |
author |
Dal Bianco, Pedro Alejandro |
author_facet |
Dal Bianco, Pedro Alejandro Ríos, Gastón Gustavo Hasperué, Waldo Stanchi, Oscar Agustín Ronchetti, Franco Quiroga, Facundo Manuel |
author_role |
author |
author2 |
Ríos, Gastón Gustavo Hasperué, Waldo Stanchi, Oscar Agustín Ronchetti, Franco Quiroga, Facundo Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Sign Language Translation Pose Estimation Sign Language Datasets Deep Learning Gloss-free |
topic |
Ciencias Informáticas Sign Language Translation Pose Estimation Sign Language Datasets Deep Learning Gloss-free |
dc.description.none.fl_txt_mv |
The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times. Red de Universidades con Carreras en Informática |
description |
The main challenge of automatic Sign Language Translation (SLT) is obtaining data to train models. For Argentinian Sign Language (LSA), the only dataset available for SLT is LSA-T, which contains extracts of a news channel in LSA and the corresponding Spanish subtitles provided by the authors. LSA-T contains a wide variety of signers, scenarios, and lightnings that could bias a model trained on it. We propose a model for Argentinian gloss-free SLT, since LSA-T does not contain gloss representations of the signs. The model is also pose-based to improve performance on low resource devices. Different versions of the model are also tested in two other well-known datasets to compare the results: GSL and RWTH Phoenix Weather 2014T. Our model stablished the new SoTA over LSA-T, which proved to be the most challenging due to the variety of topics covered that result in a vast vocabulary with many words appearing few times. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/176192 |
url |
http://sedici.unlp.edu.ar/handle/10915/176192 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5 info:eu-repo/semantics/reference/hdl/10915/172755 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 64-71 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904747510595584 |
score |
12.993085 |