Boosting classifiers for weed seeds identification

Autores
Granitto, Pablo Miguel; Garralda, Pablo A.; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.
Facultad de Informática
Materia
Ciencias Informáticas
boosting
Redes Neurales (Computación)
machine vision
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9455

id SEDICI_df8c0f8bad31d4b7e3af8bfd027de364
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9455
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Boosting classifiers for weed seeds identificationGranitto, Pablo MiguelGarralda, Pablo A.Verdes, Pablo FabiánCeccatto, Hermenegildo AlejandroCiencias InformáticasboostingRedes Neurales (Computación)machine visionThe identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.Facultad de Informática2003-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf34-39http://sedici.unlp.edu.ar/handle/10915/9455enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:43:16Zoai:sedici.unlp.edu.ar:10915/9455Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:43:17.051SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Boosting classifiers for weed seeds identification
title Boosting classifiers for weed seeds identification
spellingShingle Boosting classifiers for weed seeds identification
Granitto, Pablo Miguel
Ciencias Informáticas
boosting
Redes Neurales (Computación)
machine vision
title_short Boosting classifiers for weed seeds identification
title_full Boosting classifiers for weed seeds identification
title_fullStr Boosting classifiers for weed seeds identification
title_full_unstemmed Boosting classifiers for weed seeds identification
title_sort Boosting classifiers for weed seeds identification
dc.creator.none.fl_str_mv Granitto, Pablo Miguel
Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author Granitto, Pablo Miguel
author_facet Granitto, Pablo Miguel
Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author_role author
author2 Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
boosting
Redes Neurales (Computación)
machine vision
topic Ciencias Informáticas
boosting
Redes Neurales (Computación)
machine vision
dc.description.none.fl_txt_mv The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.
Facultad de Informática
description The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.
publishDate 2003
dc.date.none.fl_str_mv 2003-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9455
url http://sedici.unlp.edu.ar/handle/10915/9455
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
34-39
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063847391100928
score 13.22299