Boosting classifiers for weed seeds identification
- Autores
- Granitto, Pablo Miguel; Garralda, Pablo A.; Verdes, Pablo Fabián; Ceccatto, Hermenegildo Alejandro
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.
Facultad de Informática - Materia
-
Ciencias Informáticas
boosting
Redes Neurales (Computación)
machine vision - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9455
Ver los metadatos del registro completo
id |
SEDICI_df8c0f8bad31d4b7e3af8bfd027de364 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9455 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Boosting classifiers for weed seeds identificationGranitto, Pablo MiguelGarralda, Pablo A.Verdes, Pablo FabiánCeccatto, Hermenegildo AlejandroCiencias InformáticasboostingRedes Neurales (Computación)machine visionThe identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications.Facultad de Informática2003-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf34-39http://sedici.unlp.edu.ar/handle/10915/9455enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:43:16Zoai:sedici.unlp.edu.ar:10915/9455Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:43:17.051SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Boosting classifiers for weed seeds identification |
title |
Boosting classifiers for weed seeds identification |
spellingShingle |
Boosting classifiers for weed seeds identification Granitto, Pablo Miguel Ciencias Informáticas boosting Redes Neurales (Computación) machine vision |
title_short |
Boosting classifiers for weed seeds identification |
title_full |
Boosting classifiers for weed seeds identification |
title_fullStr |
Boosting classifiers for weed seeds identification |
title_full_unstemmed |
Boosting classifiers for weed seeds identification |
title_sort |
Boosting classifiers for weed seeds identification |
dc.creator.none.fl_str_mv |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author |
Granitto, Pablo Miguel |
author_facet |
Granitto, Pablo Miguel Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author_role |
author |
author2 |
Garralda, Pablo A. Verdes, Pablo Fabián Ceccatto, Hermenegildo Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas boosting Redes Neurales (Computación) machine vision |
topic |
Ciencias Informáticas boosting Redes Neurales (Computación) machine vision |
dc.description.none.fl_txt_mv |
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications. Facultad de Informática |
description |
The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement previous studies on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end, we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color features. However, the improvement in classification accuracy might be enough to make the classifier still acceptable in practical applications. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9455 |
url |
http://sedici.unlp.edu.ar/handle/10915/9455 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr03-6.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 34-39 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063847391100928 |
score |
13.22299 |