Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
- Autores
- Sengupta, Amretashis; Sarkar, Chandan Kumar; Requejo, Félix Gregorio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Física
Química
Long channel MOSFET
Non-volatile memory
C60
Ag nanocrystal
Au nanocrystal - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135520
Ver los metadatos del registro completo
id |
SEDICI_df7d3a48b6726cb627abe63a6108beb2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135520 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devicesSengupta, AmretashisSarkar, Chandan KumarRequejo, Félix GregorioFísicaQuímicaLong channel MOSFETNon-volatile memoryC60Ag nanocrystalAu nanocrystalIn this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf303-314http://sedici.unlp.edu.ar/handle/10915/135520enginfo:eu-repo/semantics/altIdentifier/issn/1569-8025info:eu-repo/semantics/altIdentifier/issn/1572-8137info:eu-repo/semantics/altIdentifier/doi/10.1007/s10825-012-0406-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:52Zoai:sedici.unlp.edu.ar:10915/135520Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:52.615SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
title |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
spellingShingle |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices Sengupta, Amretashis Física Química Long channel MOSFET Non-volatile memory C60 Ag nanocrystal Au nanocrystal |
title_short |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
title_full |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
title_fullStr |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
title_full_unstemmed |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
title_sort |
Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices |
dc.creator.none.fl_str_mv |
Sengupta, Amretashis Sarkar, Chandan Kumar Requejo, Félix Gregorio |
author |
Sengupta, Amretashis |
author_facet |
Sengupta, Amretashis Sarkar, Chandan Kumar Requejo, Félix Gregorio |
author_role |
author |
author2 |
Sarkar, Chandan Kumar Requejo, Félix Gregorio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Química Long channel MOSFET Non-volatile memory C60 Ag nanocrystal Au nanocrystal |
topic |
Física Química Long channel MOSFET Non-volatile memory C60 Ag nanocrystal Au nanocrystal |
dc.description.none.fl_txt_mv |
In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135520 |
url |
http://sedici.unlp.edu.ar/handle/10915/135520 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1569-8025 info:eu-repo/semantics/altIdentifier/issn/1572-8137 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10825-012-0406-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 303-314 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783493706612736 |
score |
12.982451 |