Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices

Autores
Sengupta, Amretashis; Sarkar, Chandan Kumar; Requejo, Félix Gregorio
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Física
Química
Long channel MOSFET
Non-volatile memory
C60
Ag nanocrystal
Au nanocrystal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/135520

id SEDICI_df7d3a48b6726cb627abe63a6108beb2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/135520
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devicesSengupta, AmretashisSarkar, Chandan KumarRequejo, Félix GregorioFísicaQuímicaLong channel MOSFETNon-volatile memoryC60Ag nanocrystalAu nanocrystalIn this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf303-314http://sedici.unlp.edu.ar/handle/10915/135520enginfo:eu-repo/semantics/altIdentifier/issn/1569-8025info:eu-repo/semantics/altIdentifier/issn/1572-8137info:eu-repo/semantics/altIdentifier/doi/10.1007/s10825-012-0406-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:52Zoai:sedici.unlp.edu.ar:10915/135520Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:52.615SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
title Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
spellingShingle Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
Sengupta, Amretashis
Física
Química
Long channel MOSFET
Non-volatile memory
C60
Ag nanocrystal
Au nanocrystal
title_short Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
title_full Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
title_fullStr Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
title_full_unstemmed Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
title_sort Semi-analytical modeling of Ag and Au nanoparticles and fullerene (C60) embedded gate oxide compound semiconductor MOSFET memory devices
dc.creator.none.fl_str_mv Sengupta, Amretashis
Sarkar, Chandan Kumar
Requejo, Félix Gregorio
author Sengupta, Amretashis
author_facet Sengupta, Amretashis
Sarkar, Chandan Kumar
Requejo, Félix Gregorio
author_role author
author2 Sarkar, Chandan Kumar
Requejo, Félix Gregorio
author2_role author
author
dc.subject.none.fl_str_mv Física
Química
Long channel MOSFET
Non-volatile memory
C60
Ag nanocrystal
Au nanocrystal
topic Física
Química
Long channel MOSFET
Non-volatile memory
C60
Ag nanocrystal
Au nanocrystal
dc.description.none.fl_txt_mv In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description In this paper we present an analytical simulation study of Non-volatile MOSFET memory devices with Ag/Au nanoparticles/fullerene (C60) embedded gate dielectric stacks. We considered a long channel planar MOSFET, having a multilayer SiO₂‒HfO₂ (7.5 nm)‒Ag/Au nc/C60 embedded HfO₂ (6 nm)‒HfO₂ (30 nm) gate dielectric stack. We considered three substrate materials GaN, InP and the conventional Si substrate, for use in such MOSFET NVM devices. From a semi-analytic solution of the Poisson equation, the potential and the electric fields in the substrate and the different layers of the gate oxide stack were derived. Thereafter using the WKB approximation, we have investigated the Fowler-Nordheim tunneling currents from the Si inversion layer to the embedded nanocrystal states in such devices. From our model, we simulated the write-erase characteristics, gate tunneling currents, and the transient threshold voltage shifts of the MOSFET NVM devices. The results from our model were compared with recent experimental results for Au nc and Ag nc embedded gate dielectric MOSFET memories. From the studies, the C60 embedded devices showed faster charging performance and higher charge storage, than both the metallic nc embedded devices. The nc Au embedded device displayed superior characteristics compared to the nc Ag embedded device. From the model GaN emerged as the overall better substrate material than Si and InP in terms of higher threshold voltage shift, lesser write programming voltage and better charge retention capabilities.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/135520
url http://sedici.unlp.edu.ar/handle/10915/135520
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1569-8025
info:eu-repo/semantics/altIdentifier/issn/1572-8137
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10825-012-0406-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
303-314
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783493706612736
score 12.982451