Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers
- Autores
- Marenco, Javier
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Dado un conjunto X de puntos en Rd y un entero k, el problema de clustering con regiones hiper-rectangulares consiste en determinar k hiper-rectángulos en Rd con el menor volumen posible de modo tal que cada punto de X esté incluido en al menos un hiper-rectángulo. Si además se especifica una cantidad p de posibles outliers, entonces se pueden tener hasta p puntos de X no incluidos en ningún hiper-rectángulo. Las técnicas de clustering con hiper-rectángulos han sido propuestas como una alternativa de clustering interpretable, dado que es sencillo explicar los clusters obtenidos en función de sus límites. Existen métodos geométricos para este problema, y también se han explorado alternativas basadas en programación lineal entera para variantes de este problema. En todos estos trabajos se asume p = 0. En este trabajo estudiamos el problema de clustering con regiones hiper- rectangulares con una linealización de la función objetivo y para el caso p > 0. Es decir, se puede descartar una cantidad prefijada de puntos, que son declarados como outliers. Presentamos un modelo natural de programación lineal entera para este problema y estudiamos el poliedro asociado. Además, consideramos un esquema heurístico basado en generación de columnas, y presentamos experimentos computacionales para comparar los dos esquemas.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Programación lineal entera
Clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/141773
Ver los metadatos del registro completo
id |
SEDICI_df18396139fa01fa537ca909658f03ab |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/141773 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliersMarenco, JavierCiencias InformáticasProgramación lineal enteraClusteringDado un conjunto X de puntos en Rd y un entero k, el problema de clustering con regiones hiper-rectangulares consiste en determinar k hiper-rectángulos en Rd con el menor volumen posible de modo tal que cada punto de X esté incluido en al menos un hiper-rectángulo. Si además se especifica una cantidad p de posibles outliers, entonces se pueden tener hasta p puntos de X no incluidos en ningún hiper-rectángulo. Las técnicas de clustering con hiper-rectángulos han sido propuestas como una alternativa de clustering interpretable, dado que es sencillo explicar los clusters obtenidos en función de sus límites. Existen métodos geométricos para este problema, y también se han explorado alternativas basadas en programación lineal entera para variantes de este problema. En todos estos trabajos se asume p = 0. En este trabajo estudiamos el problema de clustering con regiones hiper- rectangulares con una linealización de la función objetivo y para el caso p > 0. Es decir, se puede descartar una cantidad prefijada de puntos, que son declarados como outliers. Presentamos un modelo natural de programación lineal entera para este problema y estudiamos el poliedro asociado. Además, consideramos un esquema heurístico basado en generación de columnas, y presentamos experimentos computacionales para comparar los dos esquemas.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf90-90http://sedici.unlp.edu.ar/handle/10915/141773spainfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/siiio/SIIIO-18.pdfinfo:eu-repo/semantics/altIdentifier/issn/2618-3277info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:08:17Zoai:sedici.unlp.edu.ar:10915/141773Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:08:18.663SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
title |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
spellingShingle |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers Marenco, Javier Ciencias Informáticas Programación lineal entera Clustering |
title_short |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
title_full |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
title_fullStr |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
title_full_unstemmed |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
title_sort |
Modelos de programación lineal entera para el problema de clustering con regiones hiper-rectangulares y outliers |
dc.creator.none.fl_str_mv |
Marenco, Javier |
author |
Marenco, Javier |
author_facet |
Marenco, Javier |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Programación lineal entera Clustering |
topic |
Ciencias Informáticas Programación lineal entera Clustering |
dc.description.none.fl_txt_mv |
Dado un conjunto X de puntos en Rd y un entero k, el problema de clustering con regiones hiper-rectangulares consiste en determinar k hiper-rectángulos en Rd con el menor volumen posible de modo tal que cada punto de X esté incluido en al menos un hiper-rectángulo. Si además se especifica una cantidad p de posibles outliers, entonces se pueden tener hasta p puntos de X no incluidos en ningún hiper-rectángulo. Las técnicas de clustering con hiper-rectángulos han sido propuestas como una alternativa de clustering interpretable, dado que es sencillo explicar los clusters obtenidos en función de sus límites. Existen métodos geométricos para este problema, y también se han explorado alternativas basadas en programación lineal entera para variantes de este problema. En todos estos trabajos se asume p = 0. En este trabajo estudiamos el problema de clustering con regiones hiper- rectangulares con una linealización de la función objetivo y para el caso p > 0. Es decir, se puede descartar una cantidad prefijada de puntos, que son declarados como outliers. Presentamos un modelo natural de programación lineal entera para este problema y estudiamos el poliedro asociado. Además, consideramos un esquema heurístico basado en generación de columnas, y presentamos experimentos computacionales para comparar los dos esquemas. Sociedad Argentina de Informática e Investigación Operativa |
description |
Dado un conjunto X de puntos en Rd y un entero k, el problema de clustering con regiones hiper-rectangulares consiste en determinar k hiper-rectángulos en Rd con el menor volumen posible de modo tal que cada punto de X esté incluido en al menos un hiper-rectángulo. Si además se especifica una cantidad p de posibles outliers, entonces se pueden tener hasta p puntos de X no incluidos en ningún hiper-rectángulo. Las técnicas de clustering con hiper-rectángulos han sido propuestas como una alternativa de clustering interpretable, dado que es sencillo explicar los clusters obtenidos en función de sus límites. Existen métodos geométricos para este problema, y también se han explorado alternativas basadas en programación lineal entera para variantes de este problema. En todos estos trabajos se asume p = 0. En este trabajo estudiamos el problema de clustering con regiones hiper- rectangulares con una linealización de la función objetivo y para el caso p > 0. Es decir, se puede descartar una cantidad prefijada de puntos, que son declarados como outliers. Presentamos un modelo natural de programación lineal entera para este problema y estudiamos el poliedro asociado. Además, consideramos un esquema heurístico basado en generación de columnas, y presentamos experimentos computacionales para comparar los dos esquemas. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/141773 |
url |
http://sedici.unlp.edu.ar/handle/10915/141773 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/siiio/SIIIO-18.pdf info:eu-repo/semantics/altIdentifier/issn/2618-3277 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 90-90 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260586539253760 |
score |
13.13397 |