Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage

Autores
Bussi, Ulises; Sauczuk, Martín; Mandile, Guillermo; Poggio, Santiago; Oliva, Damián
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The detection, geolocation, and classification of weeds in agricultural fields is a problem of interest associated with Precision Agriculture (PA). The main contribution of this work is to describe a workflow (feasible to automate) based on open-source software tools and open information to: 1) measure the spatiotemporal evolution of weed patches through satellite images, and 2) register high-resolution images (taken at low altitude) on top of the satellite image to identify the weeds that compose the detected patches. To merge the satellite and low-altitude information, the following problems must be solved: 1) correct distortions in the acquired images; 2) develop an image formation model that allows registering the low-altitude image on top of the satellite image, and 3) analyze green indices to measure patch coverage in both multiespectral satellite images and RGB images obtained from a camera mounted on an unmanned aerial vehicle. Finally, the feasibility of merging information is demonstrated through an analysis of the correlation in the coverage measures obtained from satellite and low-altitude images.
La deteccion, geolocalizacion y clasificacion de malezas en campos agricolas es un problema de interes asociado a la Agricultura de Precision (AP). El aporte principal de este trabajo es describir un flujo de trabajo (factible de automatizar) basado en herramientas de software libre e informacion abierta para: 1) medir la evolucion espaciotemporal de los parches de malezas a traves de imagenes satelitales y; 2) registrar las imagenes de alta resolucion (tomadas a baja altura) sobre la imagen satelital, para identificar las malezas que componen los parches detectados. Para fusionar la informacion satelital y de baja altura, se deben resolver los siguientes problemas: 1) corregir las distorsiones en las imagenes adquiridas; 2) desarrollar un modelo de formacion de imagenes que permita registrar la imagen a baja altura sobre la imagen satelital; 3) analizar los indices de verde para medir la cobertura de los parches, tanto en las imagenes satelitales multiespectrales, como en las imagenes RGB obtenidas desde una camara montada en un vehıculo aereo no tripulado. Finalmente, se muestra la factibilidad de realizar la fusion de informacion a partir de un analisis de la correlacion en las medidas de cobertura obtenidas de las imagenes satelitales y de las de baja altura.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Weed
Sentinel-2
Unmanned Aerial Vehicle
UAV
Malezas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/157807

id SEDICI_dd7cf079699c11987ae5055a078cbebf
oai_identifier_str oai:sedici.unlp.edu.ar:10915/157807
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverageFusión de información satelital con vuelos a baja altura de vehículos aéreos no tripulados para estimar la cobertura de malezasBussi, UlisesSauczuk, MartínMandile, GuillermoPoggio, SantiagoOliva, DamiánCiencias InformáticasWeedSentinel-2Unmanned Aerial VehicleUAVMalezasThe detection, geolocation, and classification of weeds in agricultural fields is a problem of interest associated with Precision Agriculture (PA). The main contribution of this work is to describe a workflow (feasible to automate) based on open-source software tools and open information to: 1) measure the spatiotemporal evolution of weed patches through satellite images, and 2) register high-resolution images (taken at low altitude) on top of the satellite image to identify the weeds that compose the detected patches. To merge the satellite and low-altitude information, the following problems must be solved: 1) correct distortions in the acquired images; 2) develop an image formation model that allows registering the low-altitude image on top of the satellite image, and 3) analyze green indices to measure patch coverage in both multiespectral satellite images and RGB images obtained from a camera mounted on an unmanned aerial vehicle. Finally, the feasibility of merging information is demonstrated through an analysis of the correlation in the coverage measures obtained from satellite and low-altitude images.La deteccion, geolocalizacion y clasificacion de malezas en campos agricolas es un problema de interes asociado a la Agricultura de Precision (AP). El aporte principal de este trabajo es describir un flujo de trabajo (factible de automatizar) basado en herramientas de software libre e informacion abierta para: 1) medir la evolucion espaciotemporal de los parches de malezas a traves de imagenes satelitales y; 2) registrar las imagenes de alta resolucion (tomadas a baja altura) sobre la imagen satelital, para identificar las malezas que componen los parches detectados. Para fusionar la informacion satelital y de baja altura, se deben resolver los siguientes problemas: 1) corregir las distorsiones en las imagenes adquiridas; 2) desarrollar un modelo de formacion de imagenes que permita registrar la imagen a baja altura sobre la imagen satelital; 3) analizar los indices de verde para medir la cobertura de los parches, tanto en las imagenes satelitales multiespectrales, como en las imagenes RGB obtenidas desde una camara montada en un vehıculo aereo no tripulado. Finalmente, se muestra la factibilidad de realizar la fusion de informacion a partir de un analisis de la correlacion en las medidas de cobertura obtenidas de las imagenes satelitales y de las de baja altura.Sociedad Argentina de Informática e Investigación Operativa2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2-21http://sedici.unlp.edu.ar/handle/10915/157807enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/495info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:13:06Zoai:sedici.unlp.edu.ar:10915/157807Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:13:06.263SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
Fusión de información satelital con vuelos a baja altura de vehículos aéreos no tripulados para estimar la cobertura de malezas
title Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
spellingShingle Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
Bussi, Ulises
Ciencias Informáticas
Weed
Sentinel-2
Unmanned Aerial Vehicle
UAV
Malezas
title_short Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
title_full Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
title_fullStr Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
title_full_unstemmed Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
title_sort Satellite information fusion with low-altitude unmanned aerial vehicle flights for estimating weed coverage
dc.creator.none.fl_str_mv Bussi, Ulises
Sauczuk, Martín
Mandile, Guillermo
Poggio, Santiago
Oliva, Damián
author Bussi, Ulises
author_facet Bussi, Ulises
Sauczuk, Martín
Mandile, Guillermo
Poggio, Santiago
Oliva, Damián
author_role author
author2 Sauczuk, Martín
Mandile, Guillermo
Poggio, Santiago
Oliva, Damián
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Weed
Sentinel-2
Unmanned Aerial Vehicle
UAV
Malezas
topic Ciencias Informáticas
Weed
Sentinel-2
Unmanned Aerial Vehicle
UAV
Malezas
dc.description.none.fl_txt_mv The detection, geolocation, and classification of weeds in agricultural fields is a problem of interest associated with Precision Agriculture (PA). The main contribution of this work is to describe a workflow (feasible to automate) based on open-source software tools and open information to: 1) measure the spatiotemporal evolution of weed patches through satellite images, and 2) register high-resolution images (taken at low altitude) on top of the satellite image to identify the weeds that compose the detected patches. To merge the satellite and low-altitude information, the following problems must be solved: 1) correct distortions in the acquired images; 2) develop an image formation model that allows registering the low-altitude image on top of the satellite image, and 3) analyze green indices to measure patch coverage in both multiespectral satellite images and RGB images obtained from a camera mounted on an unmanned aerial vehicle. Finally, the feasibility of merging information is demonstrated through an analysis of the correlation in the coverage measures obtained from satellite and low-altitude images.
La deteccion, geolocalizacion y clasificacion de malezas en campos agricolas es un problema de interes asociado a la Agricultura de Precision (AP). El aporte principal de este trabajo es describir un flujo de trabajo (factible de automatizar) basado en herramientas de software libre e informacion abierta para: 1) medir la evolucion espaciotemporal de los parches de malezas a traves de imagenes satelitales y; 2) registrar las imagenes de alta resolucion (tomadas a baja altura) sobre la imagen satelital, para identificar las malezas que componen los parches detectados. Para fusionar la informacion satelital y de baja altura, se deben resolver los siguientes problemas: 1) corregir las distorsiones en las imagenes adquiridas; 2) desarrollar un modelo de formacion de imagenes que permita registrar la imagen a baja altura sobre la imagen satelital; 3) analizar los indices de verde para medir la cobertura de los parches, tanto en las imagenes satelitales multiespectrales, como en las imagenes RGB obtenidas desde una camara montada en un vehıculo aereo no tripulado. Finalmente, se muestra la factibilidad de realizar la fusion de informacion a partir de un analisis de la correlacion en las medidas de cobertura obtenidas de las imagenes satelitales y de las de baja altura.
Sociedad Argentina de Informática e Investigación Operativa
description The detection, geolocation, and classification of weeds in agricultural fields is a problem of interest associated with Precision Agriculture (PA). The main contribution of this work is to describe a workflow (feasible to automate) based on open-source software tools and open information to: 1) measure the spatiotemporal evolution of weed patches through satellite images, and 2) register high-resolution images (taken at low altitude) on top of the satellite image to identify the weeds that compose the detected patches. To merge the satellite and low-altitude information, the following problems must be solved: 1) correct distortions in the acquired images; 2) develop an image formation model that allows registering the low-altitude image on top of the satellite image, and 3) analyze green indices to measure patch coverage in both multiespectral satellite images and RGB images obtained from a camera mounted on an unmanned aerial vehicle. Finally, the feasibility of merging information is demonstrated through an analysis of the correlation in the coverage measures obtained from satellite and low-altitude images.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/157807
url http://sedici.unlp.edu.ar/handle/10915/157807
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/495
info:eu-repo/semantics/altIdentifier/issn/1514-6774
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
2-21
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260634918453248
score 13.13397