Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing
- Autores
- Bhattarai, Anish; Scarpin, Gonzalo Joel; Jakhar, Amrinder; Porter, Wesley; Hand, Lavesta C.; Snider, John L.; Bastos, Leonardo M.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Light Detection and Ranging (LiDAR) technology can be used to assess canopy height in cotton (Gossypium hirsutum L.), but standardized data acquisition and processing guidelines are lacking. Accurate canopy height estimation is crucial in cotton for optimizing growth regulator application and maximizing yield. The main goal of this study was to determine the optimal unmanned aerial vehicle flight settings—altitude and speed—and assess specific processing parameters’ impact on data accuracy, processing time, and file size. Nine flight settings comprising three altitudes (12.2 m, 24.4 m, and 48.8 m) and three speeds (4.8 km/h, 9.6 km/h, and 14.4 km/h) were tested. LiDAR data were processed using DJI Terra software (v. 4.1.0), where two user-defined processing steps were examined: point-cloud thinning via grid size sub-sampling (0, 10, 20, 30, 40, and 50 cm) and slope classification (flat, gentle, and steep). The optimal flight altitude was 24.4 m, with no effect of flight speed. Grid sub-sampling up to 20 cm produced balanced accuracy, processing time, and file size. The choice of slope category had no significant effect on LiDAR-derived canopy height. These findings contribute to the development of standardized LiDAR data acquisition and processing guidelines for cotton to support crop management decision.
EEA Reconquista
Fil: Bhattarai, Anish. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Scarpin, Gonzalo Joel. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Scarpin, Gonzalo Joel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; Argentina
Fil: Jakhar, Amrinder. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Porter, Wesley. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Hand, Lavesta C. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Snider, John L. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos
Fil: Bastos, Leonardo M. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos - Fuente
- Remote Sensing 17 (9) : 1504. (May 2025)
- Materia
-
Teledetección
Algodón
Sistema Lidar
Procesamiento de Datos
Colección de Datos
Vehículo Aéreo No Tripulado
Remote Sensing
Cotton
Gossypium hirsutum
LIDAR
Data Processing
Data Collection
Unmanned Aerial Vehicles
Light Detection and Ranging - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Agropecuaria
- OAI Identificador
- oai:localhost:20.500.12123/22159
Ver los metadatos del registro completo
id |
INTADig_ed73dadac722b78355755b51a1ebe8db |
---|---|
oai_identifier_str |
oai:localhost:20.500.12123/22159 |
network_acronym_str |
INTADig |
repository_id_str |
l |
network_name_str |
INTA Digital (INTA) |
spelling |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data ProcessingBhattarai, AnishScarpin, Gonzalo JoelJakhar, AmrinderPorter, WesleyHand, Lavesta C.Snider, John L.Bastos, Leonardo M.TeledetecciónAlgodónSistema LidarProcesamiento de DatosColección de DatosVehículo Aéreo No TripuladoRemote SensingCottonGossypium hirsutumLIDARData ProcessingData CollectionUnmanned Aerial VehiclesLight Detection and RangingLight Detection and Ranging (LiDAR) technology can be used to assess canopy height in cotton (Gossypium hirsutum L.), but standardized data acquisition and processing guidelines are lacking. Accurate canopy height estimation is crucial in cotton for optimizing growth regulator application and maximizing yield. The main goal of this study was to determine the optimal unmanned aerial vehicle flight settings—altitude and speed—and assess specific processing parameters’ impact on data accuracy, processing time, and file size. Nine flight settings comprising three altitudes (12.2 m, 24.4 m, and 48.8 m) and three speeds (4.8 km/h, 9.6 km/h, and 14.4 km/h) were tested. LiDAR data were processed using DJI Terra software (v. 4.1.0), where two user-defined processing steps were examined: point-cloud thinning via grid size sub-sampling (0, 10, 20, 30, 40, and 50 cm) and slope classification (flat, gentle, and steep). The optimal flight altitude was 24.4 m, with no effect of flight speed. Grid sub-sampling up to 20 cm produced balanced accuracy, processing time, and file size. The choice of slope category had no significant effect on LiDAR-derived canopy height. These findings contribute to the development of standardized LiDAR data acquisition and processing guidelines for cotton to support crop management decision.EEA ReconquistaFil: Bhattarai, Anish. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Scarpin, Gonzalo Joel. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Scarpin, Gonzalo Joel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; ArgentinaFil: Jakhar, Amrinder. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Porter, Wesley. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Hand, Lavesta C. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Snider, John L. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosFil: Bastos, Leonardo M. University of Georgia. Department of Crop and Soil Sciences; Estados UnidosMDPI2025-05-05T13:52:02Z2025-05-05T13:52:02Z2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12123/22159https://www.mdpi.com/2072-4292/17/9/15042072-4292https://doi.org/10.3390/rs17091504Remote Sensing 17 (9) : 1504. (May 2025)reponame:INTA Digital (INTA)instname:Instituto Nacional de Tecnología Agropecuariaenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)2025-09-04T09:51:02Zoai:localhost:20.500.12123/22159instacron:INTAInstitucionalhttp://repositorio.inta.gob.ar/Organismo científico-tecnológicoNo correspondehttp://repositorio.inta.gob.ar/oai/requesttripaldi.nicolas@inta.gob.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:l2025-09-04 09:51:03.028INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuariafalse |
dc.title.none.fl_str_mv |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
title |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
spellingShingle |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing Bhattarai, Anish Teledetección Algodón Sistema Lidar Procesamiento de Datos Colección de Datos Vehículo Aéreo No Tripulado Remote Sensing Cotton Gossypium hirsutum LIDAR Data Processing Data Collection Unmanned Aerial Vehicles Light Detection and Ranging |
title_short |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
title_full |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
title_fullStr |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
title_full_unstemmed |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
title_sort |
Optimizing Unmanned Aerial Vehicle LiDAR Data Collection in Cotton Through Flight Settings and Data Processing |
dc.creator.none.fl_str_mv |
Bhattarai, Anish Scarpin, Gonzalo Joel Jakhar, Amrinder Porter, Wesley Hand, Lavesta C. Snider, John L. Bastos, Leonardo M. |
author |
Bhattarai, Anish |
author_facet |
Bhattarai, Anish Scarpin, Gonzalo Joel Jakhar, Amrinder Porter, Wesley Hand, Lavesta C. Snider, John L. Bastos, Leonardo M. |
author_role |
author |
author2 |
Scarpin, Gonzalo Joel Jakhar, Amrinder Porter, Wesley Hand, Lavesta C. Snider, John L. Bastos, Leonardo M. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Teledetección Algodón Sistema Lidar Procesamiento de Datos Colección de Datos Vehículo Aéreo No Tripulado Remote Sensing Cotton Gossypium hirsutum LIDAR Data Processing Data Collection Unmanned Aerial Vehicles Light Detection and Ranging |
topic |
Teledetección Algodón Sistema Lidar Procesamiento de Datos Colección de Datos Vehículo Aéreo No Tripulado Remote Sensing Cotton Gossypium hirsutum LIDAR Data Processing Data Collection Unmanned Aerial Vehicles Light Detection and Ranging |
dc.description.none.fl_txt_mv |
Light Detection and Ranging (LiDAR) technology can be used to assess canopy height in cotton (Gossypium hirsutum L.), but standardized data acquisition and processing guidelines are lacking. Accurate canopy height estimation is crucial in cotton for optimizing growth regulator application and maximizing yield. The main goal of this study was to determine the optimal unmanned aerial vehicle flight settings—altitude and speed—and assess specific processing parameters’ impact on data accuracy, processing time, and file size. Nine flight settings comprising three altitudes (12.2 m, 24.4 m, and 48.8 m) and three speeds (4.8 km/h, 9.6 km/h, and 14.4 km/h) were tested. LiDAR data were processed using DJI Terra software (v. 4.1.0), where two user-defined processing steps were examined: point-cloud thinning via grid size sub-sampling (0, 10, 20, 30, 40, and 50 cm) and slope classification (flat, gentle, and steep). The optimal flight altitude was 24.4 m, with no effect of flight speed. Grid sub-sampling up to 20 cm produced balanced accuracy, processing time, and file size. The choice of slope category had no significant effect on LiDAR-derived canopy height. These findings contribute to the development of standardized LiDAR data acquisition and processing guidelines for cotton to support crop management decision. EEA Reconquista Fil: Bhattarai, Anish. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Scarpin, Gonzalo Joel. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Scarpin, Gonzalo Joel. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Reconquista; Argentina Fil: Jakhar, Amrinder. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Porter, Wesley. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Hand, Lavesta C. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Snider, John L. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos Fil: Bastos, Leonardo M. University of Georgia. Department of Crop and Soil Sciences; Estados Unidos |
description |
Light Detection and Ranging (LiDAR) technology can be used to assess canopy height in cotton (Gossypium hirsutum L.), but standardized data acquisition and processing guidelines are lacking. Accurate canopy height estimation is crucial in cotton for optimizing growth regulator application and maximizing yield. The main goal of this study was to determine the optimal unmanned aerial vehicle flight settings—altitude and speed—and assess specific processing parameters’ impact on data accuracy, processing time, and file size. Nine flight settings comprising three altitudes (12.2 m, 24.4 m, and 48.8 m) and three speeds (4.8 km/h, 9.6 km/h, and 14.4 km/h) were tested. LiDAR data were processed using DJI Terra software (v. 4.1.0), where two user-defined processing steps were examined: point-cloud thinning via grid size sub-sampling (0, 10, 20, 30, 40, and 50 cm) and slope classification (flat, gentle, and steep). The optimal flight altitude was 24.4 m, with no effect of flight speed. Grid sub-sampling up to 20 cm produced balanced accuracy, processing time, and file size. The choice of slope category had no significant effect on LiDAR-derived canopy height. These findings contribute to the development of standardized LiDAR data acquisition and processing guidelines for cotton to support crop management decision. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05-05T13:52:02Z 2025-05-05T13:52:02Z 2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12123/22159 https://www.mdpi.com/2072-4292/17/9/1504 2072-4292 https://doi.org/10.3390/rs17091504 |
url |
http://hdl.handle.net/20.500.12123/22159 https://www.mdpi.com/2072-4292/17/9/1504 https://doi.org/10.3390/rs17091504 |
identifier_str_mv |
2072-4292 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
Remote Sensing 17 (9) : 1504. (May 2025) reponame:INTA Digital (INTA) instname:Instituto Nacional de Tecnología Agropecuaria |
reponame_str |
INTA Digital (INTA) |
collection |
INTA Digital (INTA) |
instname_str |
Instituto Nacional de Tecnología Agropecuaria |
repository.name.fl_str_mv |
INTA Digital (INTA) - Instituto Nacional de Tecnología Agropecuaria |
repository.mail.fl_str_mv |
tripaldi.nicolas@inta.gob.ar |
_version_ |
1842341439684476928 |
score |
12.623145 |