Accurate pressure post-process of a finite element method for elastoacoustics

Autores
Alonso, Ana Esther; Dello Russo, Anahí; Padra, Claudio; Rodríguez, Rodolfo
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L2 norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L2 estimates for the solid displacements obtained with the original method are also proved.
Facultad de Ciencias Exactas
Materia
Matemática
Ciencias Exactas
fluid pressure
computation
Raviart-Thomas elements
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/141687

id SEDICI_dae00d9b9cffa14a17bee3a6d2f7c76a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/141687
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Accurate pressure post-process of a finite element method for elastoacousticsAlonso, Ana EstherDello Russo, AnahíPadra, ClaudioRodríguez, RodolfoMatemáticaCiencias Exactasfluid pressurecomputationRaviart-Thomas elementsThis paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L2 norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L2 estimates for the solid displacements obtained with the original method are also proved.Facultad de Ciencias Exactas2004-07-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf389-425http://sedici.unlp.edu.ar/handle/10915/141687enginfo:eu-repo/semantics/altIdentifier/issn/0029-599xinfo:eu-repo/semantics/altIdentifier/issn/0945-3245info:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-004-0523-zinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:11Zoai:sedici.unlp.edu.ar:10915/141687Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:12.186SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Accurate pressure post-process of a finite element method for elastoacoustics
title Accurate pressure post-process of a finite element method for elastoacoustics
spellingShingle Accurate pressure post-process of a finite element method for elastoacoustics
Alonso, Ana Esther
Matemática
Ciencias Exactas
fluid pressure
computation
Raviart-Thomas elements
title_short Accurate pressure post-process of a finite element method for elastoacoustics
title_full Accurate pressure post-process of a finite element method for elastoacoustics
title_fullStr Accurate pressure post-process of a finite element method for elastoacoustics
title_full_unstemmed Accurate pressure post-process of a finite element method for elastoacoustics
title_sort Accurate pressure post-process of a finite element method for elastoacoustics
dc.creator.none.fl_str_mv Alonso, Ana Esther
Dello Russo, Anahí
Padra, Claudio
Rodríguez, Rodolfo
author Alonso, Ana Esther
author_facet Alonso, Ana Esther
Dello Russo, Anahí
Padra, Claudio
Rodríguez, Rodolfo
author_role author
author2 Dello Russo, Anahí
Padra, Claudio
Rodríguez, Rodolfo
author2_role author
author
author
dc.subject.none.fl_str_mv Matemática
Ciencias Exactas
fluid pressure
computation
Raviart-Thomas elements
topic Matemática
Ciencias Exactas
fluid pressure
computation
Raviart-Thomas elements
dc.description.none.fl_txt_mv This paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L2 norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L2 estimates for the solid displacements obtained with the original method are also proved.
Facultad de Ciencias Exactas
description This paper deals with a post-process to obtain a more accurate approximation of the fluid pressure from a finite element computation of the vibration modes of a fluid-structure coupled system. The underlying finite element method, based on a displacement formulation for both media, consists of using Raviart-Thomas elements for the fluid combined with standard continuous elements for the solid. An easy to compute post-process of the pressure is derived. The relation between this post-process and an alternative finite element approximation of the problem based on discretizing the fluid pressure by enriched Crouzeix-Raviart elements is studied. Higher order estimates for the L2 norm of the post-processed pressure are proved by exploiting this relation. As a by-product, higher order L2 estimates for the solid displacements obtained with the original method are also proved.
publishDate 2004
dc.date.none.fl_str_mv 2004-07-14
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/141687
url http://sedici.unlp.edu.ar/handle/10915/141687
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0029-599x
info:eu-repo/semantics/altIdentifier/issn/0945-3245
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00211-004-0523-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
389-425
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616201236381696
score 13.070432