Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra
- Autores
- Acosta, Gerardo Gabriel; Apel, Thomas; Duran, Ricardo Guillermo; Lombardi, Ariel Luis
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra. Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree k ≥ 0, we prove error estimates of order j + 1 when the vector field being approximated has components in WJ+1,p, for triangles or tetrahedra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case j = k. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for k = 0.
Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Apel, Thomas. Institut fur Mathematik und Bauinformatik, Universit at der Bundeswehr Munchen; Armenia
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ANISOTROPIC FINITE ELEMENTS
MIXED FINITE ELEMENTS
RAVIART-THOMAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127529
Ver los metadatos del registro completo
id |
CONICETDig_0c8fe5a48f54979ac747964b1de414b5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127529 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedraAcosta, Gerardo GabrielApel, ThomasDuran, Ricardo GuillermoLombardi, Ariel LuisANISOTROPIC FINITE ELEMENTSMIXED FINITE ELEMENTSRAVIART-THOMAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra. Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree k ≥ 0, we prove error estimates of order j + 1 when the vector field being approximated has components in WJ+1,p, for triangles or tetrahedra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case j = k. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for k = 0.Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Apel, Thomas. Institut fur Mathematik und Bauinformatik, Universit at der Bundeswehr Munchen; ArmeniaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127529Acosta, Gerardo Gabriel; Apel, Thomas; Duran, Ricardo Guillermo; Lombardi, Ariel Luis; Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra; American Mathematical Society; Mathematics of Computation; 80; 273; 1-2011; 141-1631088-6842CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0809.2072info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2011-80-273/S0025-5718-2010-02406-8/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2010-02406-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:26Zoai:ri.conicet.gov.ar:11336/127529instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:26.992CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
title |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
spellingShingle |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra Acosta, Gerardo Gabriel ANISOTROPIC FINITE ELEMENTS MIXED FINITE ELEMENTS RAVIART-THOMAS |
title_short |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
title_full |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
title_fullStr |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
title_full_unstemmed |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
title_sort |
Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra |
dc.creator.none.fl_str_mv |
Acosta, Gerardo Gabriel Apel, Thomas Duran, Ricardo Guillermo Lombardi, Ariel Luis |
author |
Acosta, Gerardo Gabriel |
author_facet |
Acosta, Gerardo Gabriel Apel, Thomas Duran, Ricardo Guillermo Lombardi, Ariel Luis |
author_role |
author |
author2 |
Apel, Thomas Duran, Ricardo Guillermo Lombardi, Ariel Luis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
ANISOTROPIC FINITE ELEMENTS MIXED FINITE ELEMENTS RAVIART-THOMAS |
topic |
ANISOTROPIC FINITE ELEMENTS MIXED FINITE ELEMENTS RAVIART-THOMAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra. Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree k ≥ 0, we prove error estimates of order j + 1 when the vector field being approximated has components in WJ+1,p, for triangles or tetrahedra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case j = k. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for k = 0. Fil: Acosta, Gerardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Apel, Thomas. Institut fur Mathematik und Bauinformatik, Universit at der Bundeswehr Munchen; Armenia Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We prove optimal order error estimates for the Raviart-Thomas interpolation of arbitrary order under the maximum angle condition for triangles and under two generalizations of this condition, namely, the so-called three-dimensional maximum angle condition and the regular vertex property, for tetrahedra. Our techniques are different from those used in previous papers on the subject, and the results obtained are more general in several aspects. First, intermediate regularity is allowed; that is, for the Raviart-Thomas interpolation of degree k ≥ 0, we prove error estimates of order j + 1 when the vector field being approximated has components in WJ+1,p, for triangles or tetrahedra, where 0 ≤ j ≤ k and 1 ≤ p ≤ ∞. These results are new even in the two-dimensional case. Indeed, the estimate was known only in the case j = k. On the other hand, in the three-dimensional case, results under the maximum angle condition were known only for k = 0. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127529 Acosta, Gerardo Gabriel; Apel, Thomas; Duran, Ricardo Guillermo; Lombardi, Ariel Luis; Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra; American Mathematical Society; Mathematics of Computation; 80; 273; 1-2011; 141-163 1088-6842 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127529 |
identifier_str_mv |
Acosta, Gerardo Gabriel; Apel, Thomas; Duran, Ricardo Guillermo; Lombardi, Ariel Luis; Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra; American Mathematical Society; Mathematics of Computation; 80; 273; 1-2011; 141-163 1088-6842 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0809.2072 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2011-80-273/S0025-5718-2010-02406-8/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2010-02406-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614215676985344 |
score |
13.070432 |