DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
- Autores
- Apolloni, Javier; Leguizamón, Guillermo; Alba Torres, Enrique
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Feature Selection
Support VectorMachines
Binary Differential Evolution
Ranking of Features
Algorithms
Intelligent agents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23609
Ver los metadatos del registro completo
id |
SEDICI_da226a84d7bb4d071eefb831d0214e41 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23609 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classificationApolloni, JavierLeguizamón, GuillermoAlba Torres, EnriqueCiencias InformáticasFeature SelectionSupport VectorMachinesBinary Differential EvolutionRanking of FeaturesAlgorithmsIntelligent agentsDNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23609enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:20Zoai:sedici.unlp.edu.ar:10915/23609Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:20.383SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
title |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
spellingShingle |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification Apolloni, Javier Ciencias Informáticas Feature Selection Support VectorMachines Binary Differential Evolution Ranking of Features Algorithms Intelligent agents |
title_short |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
title_full |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
title_fullStr |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
title_full_unstemmed |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
title_sort |
DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification |
dc.creator.none.fl_str_mv |
Apolloni, Javier Leguizamón, Guillermo Alba Torres, Enrique |
author |
Apolloni, Javier |
author_facet |
Apolloni, Javier Leguizamón, Guillermo Alba Torres, Enrique |
author_role |
author |
author2 |
Leguizamón, Guillermo Alba Torres, Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Feature Selection Support VectorMachines Binary Differential Evolution Ranking of Features Algorithms Intelligent agents |
topic |
Ciencias Informáticas Feature Selection Support VectorMachines Binary Differential Evolution Ranking of Features Algorithms Intelligent agents |
dc.description.none.fl_txt_mv |
DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23609 |
url |
http://sedici.unlp.edu.ar/handle/10915/23609 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260122009600000 |
score |
13.13397 |