DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification

Autores
Apolloni, Javier; Leguizamón, Guillermo; Alba Torres, Enrique
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Feature Selection
Support VectorMachines
Binary Differential Evolution
Ranking of Features
Algorithms
Intelligent agents
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23609

id SEDICI_da226a84d7bb4d071eefb831d0214e41
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23609
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classificationApolloni, JavierLeguizamón, GuillermoAlba Torres, EnriqueCiencias InformáticasFeature SelectionSupport VectorMachinesBinary Differential EvolutionRanking of FeaturesAlgorithmsIntelligent agentsDNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23609enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:20Zoai:sedici.unlp.edu.ar:10915/23609Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:20.383SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
title DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
spellingShingle DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
Apolloni, Javier
Ciencias Informáticas
Feature Selection
Support VectorMachines
Binary Differential Evolution
Ranking of Features
Algorithms
Intelligent agents
title_short DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
title_full DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
title_fullStr DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
title_full_unstemmed DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
title_sort DE-SVMRank: a differential evolution algorithm with a rank-based feature selection process for microarray data classification
dc.creator.none.fl_str_mv Apolloni, Javier
Leguizamón, Guillermo
Alba Torres, Enrique
author Apolloni, Javier
author_facet Apolloni, Javier
Leguizamón, Guillermo
Alba Torres, Enrique
author_role author
author2 Leguizamón, Guillermo
Alba Torres, Enrique
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Feature Selection
Support VectorMachines
Binary Differential Evolution
Ranking of Features
Algorithms
Intelligent agents
topic Ciencias Informáticas
Feature Selection
Support VectorMachines
Binary Differential Evolution
Ranking of Features
Algorithms
Intelligent agents
dc.description.none.fl_txt_mv DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description DNA Microarrays are powerful tools to analyze and identify certain disease from the expression level of the genes in tissues samples. Many machine learning techniques are suitable for building predictive models to classify microarray samples into different biological categories. The accuracy of the predictive model may benefit from a relevant feature selection method and even more, if the features are ordered in terms of its relevance. In this paper, we propose a rank-based method to create the initial population in a Binary DE-SVM based algorithm used to build a predictive model. The new algorithm (DE-SVMRank) is evaluated in terms of the achieved accuracy by the predictive model and also, the execution time required to complete the maximun number of iterations. Experimental results on public-domain microarrays show that our proposal reduces the computational time in comparison with a similar approach while providing highly competitive results.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23609
url http://sedici.unlp.edu.ar/handle/10915/23609
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260122009600000
score 13.13397