Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm
- Autores
- Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features.
Fil: Auat Cheein, Fernando Alfredo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SLAM
Mapping
Features Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243645
Ver los metadatos del registro completo
id |
CONICETDig_44271a2762036ec0bdc820e61f9ec0a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243645 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM AlgorithmAuat Cheein, Fernando AlfredoCarelli Albarracin, Ricardo OscarSLAMMappingFeatures Selectionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features.Fil: Auat Cheein, Fernando Alfredo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMolecular Diversity Preservation International2010-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243645Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar; Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm; Molecular Diversity Preservation International; Sensors; 11; 1; 12-2010; 62-891424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1424-8220/11/1/62/info:eu-repo/semantics/altIdentifier/doi/10.3390/s110100062info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:03Zoai:ri.conicet.gov.ar:11336/243645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:03.991CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
title |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
spellingShingle |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm Auat Cheein, Fernando Alfredo SLAM Mapping Features Selection |
title_short |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
title_full |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
title_fullStr |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
title_full_unstemmed |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
title_sort |
Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm |
dc.creator.none.fl_str_mv |
Auat Cheein, Fernando Alfredo Carelli Albarracin, Ricardo Oscar |
author |
Auat Cheein, Fernando Alfredo |
author_facet |
Auat Cheein, Fernando Alfredo Carelli Albarracin, Ricardo Oscar |
author_role |
author |
author2 |
Carelli Albarracin, Ricardo Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
SLAM Mapping Features Selection |
topic |
SLAM Mapping Features Selection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features. Fil: Auat Cheein, Fernando Alfredo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carelli Albarracin, Ricardo Oscar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper introduces several non-arbitrary features selection techniques for aSimultaneous Localization and Mapping (SLAM) algorithm. The features selection criteriaare based on the determination of the most significant features from a SLAM convergenceperspective. The SLAM algorithm implemented in this work is a sequential EKF (ExtendedKalman filter) SLAM. The features selection criteria are applied on the correction stage ofthe SLAM algorithm, restricting it to correct the SLAM algorithm with the most significantfeatures. This restriction also causes a decrement in the processing time of the SLAM.Several experiments with a mobile robot are shown in this work. The experiments concernthe maps reconstruction and a comparison between the different proposed techniques performance.The experiments were carried out at an outdoor environment composed by trees,although the results shown herein are not restricted to a special type of features. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243645 Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar; Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm; Molecular Diversity Preservation International; Sensors; 11; 1; 12-2010; 62-89 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243645 |
identifier_str_mv |
Auat Cheein, Fernando Alfredo; Carelli Albarracin, Ricardo Oscar; Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm; Molecular Diversity Preservation International; Sensors; 11; 1; 12-2010; 62-89 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/1424-8220/11/1/62/ info:eu-repo/semantics/altIdentifier/doi/10.3390/s110100062 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268771636477952 |
score |
13.13397 |