Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol
- Autores
- Igal, Rubén Ariel; Wang, Shuli; Gonzalez-Baró, Maria; Coleman, Rosalind A.
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [14C]oleate (∼3 μM), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [14C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 μM oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.
Instituto de Investigaciones Bioquímicas de La Plata - Materia
-
Ciencias Médicas
glycerol-3-phosphate acyltransferase
glycerolipid synthesis
insulin
carbohydrate - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/83437
Ver los metadatos del registro completo
id |
SEDICI_d73c19e838ef9a98824e511c264d058a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/83437 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into TriacylglycerolIgal, Rubén ArielWang, ShuliGonzalez-Baró, MariaColeman, Rosalind A.Ciencias Médicasglycerol-3-phosphate acyltransferaseglycerolipid synthesisinsulincarbohydrateThe mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [14C]oleate (∼3 μM), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [14C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 μM oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species.Instituto de Investigaciones Bioquímicas de La Plata2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf42205-42212http://sedici.unlp.edu.ar/handle/10915/83437enginfo:eu-repo/semantics/altIdentifier/issn/0021-9258info:eu-repo/semantics/altIdentifier/doi/10.1074/jbc.M103386200info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:47Zoai:sedici.unlp.edu.ar:10915/83437Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:47.179SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
title |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
spellingShingle |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol Igal, Rubén Ariel Ciencias Médicas glycerol-3-phosphate acyltransferase glycerolipid synthesis insulin carbohydrate |
title_short |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
title_full |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
title_fullStr |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
title_full_unstemmed |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
title_sort |
Mitochondrial Glycerol Phosphate Acyltransferase Directs the Incorporation of Exogenous Fatty Acids into Triacylglycerol |
dc.creator.none.fl_str_mv |
Igal, Rubén Ariel Wang, Shuli Gonzalez-Baró, Maria Coleman, Rosalind A. |
author |
Igal, Rubén Ariel |
author_facet |
Igal, Rubén Ariel Wang, Shuli Gonzalez-Baró, Maria Coleman, Rosalind A. |
author_role |
author |
author2 |
Wang, Shuli Gonzalez-Baró, Maria Coleman, Rosalind A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Médicas glycerol-3-phosphate acyltransferase glycerolipid synthesis insulin carbohydrate |
topic |
Ciencias Médicas glycerol-3-phosphate acyltransferase glycerolipid synthesis insulin carbohydrate |
dc.description.none.fl_txt_mv |
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [14C]oleate (∼3 μM), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [14C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 μM oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species. Instituto de Investigaciones Bioquímicas de La Plata |
description |
The mitochondrial isoform of glycerol-3-phosphate acyltransferase (GPAT), the first step in glycerolipid synthesis, is up-regulated by insulin and by high carbohydrate feeding via SREBP-1c, suggesting that it plays a role in triacylglycerol synthesis. To test this hypothesis, we overexpressed mitochondrial GPAT in Chinese hamster ovary (CHO) cells. When GPAT was overexpressed 3.8-fold, triacylglycerol mass was 2.7-fold higher than in control cells. After incubation with trace [14C]oleate (∼3 μM), control cells incorporated 4.7-fold more label into phospholipid than triacylglycerol, but GPAT-overexpressing cells incorporated equal amounts of label into phospholipid and triacylglycerol. In GPAT-overexpressing cells, the incorporation of label into phospholipid, particularly phosphatidylcholine, decreased 30%, despite normal growth rate and phospholipid content, suggesting that exogenous oleate was directed primarily toward triacylglycerol synthesis. Transiently transfected HEK293 cells that expressed a 4.4-fold increase in GPAT activity incorporated 9.7-fold more [14C]oleate into triacylglycerol compared with control cells, showing that the effect of GPAT overexpression was similar in two different cell types that had been transfected by different methods. When the stable, GPAT-overexpressing CHO cells were incubated with 100 μM oleate to stimulate triacylglycerol synthesis, they incorporated 1.9-fold more fatty acid into triacylglycerol than did the control cells. Confocal microscopy of CHO and HEK293 cells transfected with the GPAT-FLAG construct showed that GPAT was located correctly in mitochondria and was not present elsewhere in the cell. These studies indicate that overexpressed mitochondrial GPAT directs incorporation of exogenous fatty acid into triacylglycerol rather than phospholipid and imply that (a) mitochondrial GPAT and lysophosphatidic acid acyltransferase produce a separate pool of lysophosphatidic acid and phosphatidic acid that must be transported to the endoplasmic reticulum where the terminal enzymes of triacylglycerol synthesis are located, and (b) this pool remains relatively separate from the pool of lysophosphatidic acid and phosphatidic acid that contributes to the synthesis of the major phospholipid species. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/83437 |
url |
http://sedici.unlp.edu.ar/handle/10915/83437 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0021-9258 info:eu-repo/semantics/altIdentifier/doi/10.1074/jbc.M103386200 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 42205-42212 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064133592580096 |
score |
13.22299 |