List of clustered permutations in secondary memory for proximity searching
- Autores
- Roggero, Patricia; Reyes, Nora Susana; Figueroa, Karina; Paredes, Rodrigo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Similarity search is a difficult problem and various indexing schemas have been defined to process similarity queries efficiently in many applications, including multimedia databases and other repositories handling complex objects. Metric indices support efficient similarity searches, but most of them are designed for main memory. Thus, they can handle only small datasets, suffering serious performance degradations when the objects reside on disk. Most reallife database applications require indices able to work on secondary memory. Among a plethora of indices, the List of Clustered Permutations (LCP) has shown to be competitive in main memory.We introduce a secondary-memory variant of the LCP, which maintains the low number of distance evaluations when comparing the permutations themselves, and also needs a low number of I/O operations at construction and searching.
Facultad de Informática - Materia
-
Ciencias Informáticas
metric spaces
permutation-based algorithm
list of clusters
secondary memory
Search process
Secondary storage - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/50184
Ver los metadatos del registro completo
| id |
SEDICI_d70f0e70430c33c7fabcb8366ca447f5 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/50184 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
List of clustered permutations in secondary memory for proximity searchingRoggero, PatriciaReyes, Nora SusanaFigueroa, KarinaParedes, RodrigoCiencias Informáticasmetric spacespermutation-based algorithmlist of clusterssecondary memorySearch processSecondary storageSimilarity search is a difficult problem and various indexing schemas have been defined to process similarity queries efficiently in many applications, including multimedia databases and other repositories handling complex objects. Metric indices support efficient similarity searches, but most of them are designed for main memory. Thus, they can handle only small datasets, suffering serious performance degradations when the objects reside on disk. Most reallife database applications require indices able to work on secondary memory. Among a plethora of indices, the List of Clustered Permutations (LCP) has shown to be competitive in main memory.We introduce a secondary-memory variant of the LCP, which maintains the low number of distance evaluations when comparing the permutations themselves, and also needs a low number of I/O operations at construction and searching.Facultad de Informática2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf107-113http://sedici.unlp.edu.ar/handle/10915/50184enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-10.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:45:20Zoai:sedici.unlp.edu.ar:10915/50184Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:45:21.122SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
List of clustered permutations in secondary memory for proximity searching |
| title |
List of clustered permutations in secondary memory for proximity searching |
| spellingShingle |
List of clustered permutations in secondary memory for proximity searching Roggero, Patricia Ciencias Informáticas metric spaces permutation-based algorithm list of clusters secondary memory Search process Secondary storage |
| title_short |
List of clustered permutations in secondary memory for proximity searching |
| title_full |
List of clustered permutations in secondary memory for proximity searching |
| title_fullStr |
List of clustered permutations in secondary memory for proximity searching |
| title_full_unstemmed |
List of clustered permutations in secondary memory for proximity searching |
| title_sort |
List of clustered permutations in secondary memory for proximity searching |
| dc.creator.none.fl_str_mv |
Roggero, Patricia Reyes, Nora Susana Figueroa, Karina Paredes, Rodrigo |
| author |
Roggero, Patricia |
| author_facet |
Roggero, Patricia Reyes, Nora Susana Figueroa, Karina Paredes, Rodrigo |
| author_role |
author |
| author2 |
Reyes, Nora Susana Figueroa, Karina Paredes, Rodrigo |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas metric spaces permutation-based algorithm list of clusters secondary memory Search process Secondary storage |
| topic |
Ciencias Informáticas metric spaces permutation-based algorithm list of clusters secondary memory Search process Secondary storage |
| dc.description.none.fl_txt_mv |
Similarity search is a difficult problem and various indexing schemas have been defined to process similarity queries efficiently in many applications, including multimedia databases and other repositories handling complex objects. Metric indices support efficient similarity searches, but most of them are designed for main memory. Thus, they can handle only small datasets, suffering serious performance degradations when the objects reside on disk. Most reallife database applications require indices able to work on secondary memory. Among a plethora of indices, the List of Clustered Permutations (LCP) has shown to be competitive in main memory.We introduce a secondary-memory variant of the LCP, which maintains the low number of distance evaluations when comparing the permutations themselves, and also needs a low number of I/O operations at construction and searching. Facultad de Informática |
| description |
Similarity search is a difficult problem and various indexing schemas have been defined to process similarity queries efficiently in many applications, including multimedia databases and other repositories handling complex objects. Metric indices support efficient similarity searches, but most of them are designed for main memory. Thus, they can handle only small datasets, suffering serious performance degradations when the objects reside on disk. Most reallife database applications require indices able to work on secondary memory. Among a plethora of indices, the List of Clustered Permutations (LCP) has shown to be competitive in main memory.We introduce a secondary-memory variant of the LCP, which maintains the low number of distance evaluations when comparing the permutations themselves, and also needs a low number of I/O operations at construction and searching. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/50184 |
| url |
http://sedici.unlp.edu.ar/handle/10915/50184 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST41-Paper-10.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 107-113 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782970244890624 |
| score |
12.982451 |