Dynamic Spatial Approximation Trees with clusters for secondary memory
- Autores
- Britos, Luís; Printista, Alicia Marcela; Reyes, Nora Susana
- Año de publicación
- 2010
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.
Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
secondary memory
Base de Datos
Data mining
Metrics
clusters
data bases
DSACL tree - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/19337
Ver los metadatos del registro completo
id |
SEDICI_acb93d1d1c78082b9af1c7b326136b28 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/19337 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Dynamic Spatial Approximation Trees with clusters for secondary memoryBritos, LuísPrintista, Alicia MarcelaReyes, Nora SusanaCiencias Informáticassecondary memoryBase de DatosData miningMetricsclustersdata basesDSACL treeMetric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf712-721http://sedici.unlp.edu.ar/handle/10915/19337spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:26:43Zoai:sedici.unlp.edu.ar:10915/19337Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:26:43.798SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
title |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
spellingShingle |
Dynamic Spatial Approximation Trees with clusters for secondary memory Britos, Luís Ciencias Informáticas secondary memory Base de Datos Data mining Metrics clusters data bases DSACL tree |
title_short |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
title_full |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
title_fullStr |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
title_full_unstemmed |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
title_sort |
Dynamic Spatial Approximation Trees with clusters for secondary memory |
dc.creator.none.fl_str_mv |
Britos, Luís Printista, Alicia Marcela Reyes, Nora Susana |
author |
Britos, Luís |
author_facet |
Britos, Luís Printista, Alicia Marcela Reyes, Nora Susana |
author_role |
author |
author2 |
Printista, Alicia Marcela Reyes, Nora Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas secondary memory Base de Datos Data mining Metrics clusters data bases DSACL tree |
topic |
Ciencias Informáticas secondary memory Base de Datos Data mining Metrics clusters data bases DSACL tree |
dc.description.none.fl_txt_mv |
Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications. Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/19337 |
url |
http://sedici.unlp.edu.ar/handle/10915/19337 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 712-721 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260100562026496 |
score |
13.13397 |