Dynamic Spatial Approximation Trees with clusters for secondary memory

Autores
Britos, Luís; Printista, Alicia Marcela; Reyes, Nora Susana
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.
Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
secondary memory
Base de Datos
Data mining
Metrics
clusters
data bases
DSACL tree
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/19337

id SEDICI_acb93d1d1c78082b9af1c7b326136b28
oai_identifier_str oai:sedici.unlp.edu.ar:10915/19337
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamic Spatial Approximation Trees with clusters for secondary memoryBritos, LuísPrintista, Alicia MarcelaReyes, Nora SusanaCiencias Informáticassecondary memoryBase de DatosData miningMetricsclustersdata basesDSACL treeMetric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf712-721http://sedici.unlp.edu.ar/handle/10915/19337spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:26:43Zoai:sedici.unlp.edu.ar:10915/19337Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:26:43.798SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamic Spatial Approximation Trees with clusters for secondary memory
title Dynamic Spatial Approximation Trees with clusters for secondary memory
spellingShingle Dynamic Spatial Approximation Trees with clusters for secondary memory
Britos, Luís
Ciencias Informáticas
secondary memory
Base de Datos
Data mining
Metrics
clusters
data bases
DSACL tree
title_short Dynamic Spatial Approximation Trees with clusters for secondary memory
title_full Dynamic Spatial Approximation Trees with clusters for secondary memory
title_fullStr Dynamic Spatial Approximation Trees with clusters for secondary memory
title_full_unstemmed Dynamic Spatial Approximation Trees with clusters for secondary memory
title_sort Dynamic Spatial Approximation Trees with clusters for secondary memory
dc.creator.none.fl_str_mv Britos, Luís
Printista, Alicia Marcela
Reyes, Nora Susana
author Britos, Luís
author_facet Britos, Luís
Printista, Alicia Marcela
Reyes, Nora Susana
author_role author
author2 Printista, Alicia Marcela
Reyes, Nora Susana
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
secondary memory
Base de Datos
Data mining
Metrics
clusters
data bases
DSACL tree
topic Ciencias Informáticas
secondary memory
Base de Datos
Data mining
Metrics
clusters
data bases
DSACL tree
dc.description.none.fl_txt_mv Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.
Presentado en el VII Workshop Bases de Datos y Minería de Datos (WBD)
Red de Universidades con Carreras en Informática (RedUNCI)
description Metric space searching is an emerging technique to address the problem of e cient similarity searching in many applications, including multimedia databases and other repositories handling complex objects. Although promising, the metric space approach is still immature in several aspects that are well established in traditional databases. In particular, most indexing schemes are not dynamic. From the few dynamic indexes, even fewer work well in secondary memory. That is, most of them need the index in main memory in order to operate e ciently. In this paper we introduce a secondary-memory variant of the Dynamic Spatial Approximation Tree with Clusters (DSACL-tree) which has shown to be competitive in main memory. The resulting index handles well the secondary memory scenario and is competitive with the state of the art. The resulting index is a much more practical data structure that can be useful in a wide range of database applications.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/19337
url http://sedici.unlp.edu.ar/handle/10915/19337
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
712-721
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260100562026496
score 13.13397