Bionanoparticles, a green nanochemistry approach

Autores
Cauerhff, Ana Albina; Castro, Guillermo Raúl
Año de publicación
2013
Idioma
inglés
Tipo de recurso
reseña artículo
Estado
versión publicada
Descripción
Background: In the past decade, considerable attention has been paid for the development of novel strategies for the synthesis of different kind of nano-objects. Most of the current strategies are usually working by the use physical or chemical principles to develop a myriad of nano-objects with multiple applications. Main fields of nanotechnology applications range from catalysis, micro- and nano-electronics (semiconductors, single electrons transistors), non-linear optic devices, photo-electrochemistry to biomedicine, diagnostics, foods and environment, chemical analysis and others. Results: Two main avenues for nanoparticles synthesis: cell-free extract and cell cultivation have been reported. The state of art of both biotechnological approaches for different type nanoparticles are reviewed in this work. Conclusions: Nanotechnology is a revolutionary field just at its onset, the trend in the next decades being its integration with the green chemistry approach. Several strategies involving exhaustive strain selection, cultivation modes, recombinant gene expression, metabolic engineering, protein re-design and re-engineering, and predictive modeling will allow to create nanobioreactors, a new nanobiotechnology arena with a high potential impact in many fields.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Bacteria
Bionanoparticles
Fermentation
Fungi green chemistry
Plant extracts
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85531

id SEDICI_d5599776820239b7449849fe106d906d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85531
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Bionanoparticles, a green nanochemistry approachCauerhff, Ana AlbinaCastro, Guillermo RaúlCiencias ExactasBacteriaBionanoparticlesFermentationFungi green chemistryPlant extractsBackground: In the past decade, considerable attention has been paid for the development of novel strategies for the synthesis of different kind of nano-objects. Most of the current strategies are usually working by the use physical or chemical principles to develop a myriad of nano-objects with multiple applications. Main fields of nanotechnology applications range from catalysis, micro- and nano-electronics (semiconductors, single electrons transistors), non-linear optic devices, photo-electrochemistry to biomedicine, diagnostics, foods and environment, chemical analysis and others. Results: Two main avenues for nanoparticles synthesis: cell-free extract and cell cultivation have been reported. The state of art of both biotechnological approaches for different type nanoparticles are reviewed in this work. Conclusions: Nanotechnology is a revolutionary field just at its onset, the trend in the next decades being its integration with the green chemistry approach. Several strategies involving exhaustive strain selection, cultivation modes, recombinant gene expression, metabolic engineering, protein re-design and re-engineering, and predictive modeling will allow to create nanobioreactors, a new nanobiotechnology arena with a high potential impact in many fields.Facultad de Ciencias Exactas2013info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85531enginfo:eu-repo/semantics/altIdentifier/issn/0717-3458info:eu-repo/semantics/altIdentifier/doi/10.2225/vol16-issue3-fulltext-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:55:50Zoai:sedici.unlp.edu.ar:10915/85531Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:55:51.052SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Bionanoparticles, a green nanochemistry approach
title Bionanoparticles, a green nanochemistry approach
spellingShingle Bionanoparticles, a green nanochemistry approach
Cauerhff, Ana Albina
Ciencias Exactas
Bacteria
Bionanoparticles
Fermentation
Fungi green chemistry
Plant extracts
title_short Bionanoparticles, a green nanochemistry approach
title_full Bionanoparticles, a green nanochemistry approach
title_fullStr Bionanoparticles, a green nanochemistry approach
title_full_unstemmed Bionanoparticles, a green nanochemistry approach
title_sort Bionanoparticles, a green nanochemistry approach
dc.creator.none.fl_str_mv Cauerhff, Ana Albina
Castro, Guillermo Raúl
author Cauerhff, Ana Albina
author_facet Cauerhff, Ana Albina
Castro, Guillermo Raúl
author_role author
author2 Castro, Guillermo Raúl
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Bacteria
Bionanoparticles
Fermentation
Fungi green chemistry
Plant extracts
topic Ciencias Exactas
Bacteria
Bionanoparticles
Fermentation
Fungi green chemistry
Plant extracts
dc.description.none.fl_txt_mv Background: In the past decade, considerable attention has been paid for the development of novel strategies for the synthesis of different kind of nano-objects. Most of the current strategies are usually working by the use physical or chemical principles to develop a myriad of nano-objects with multiple applications. Main fields of nanotechnology applications range from catalysis, micro- and nano-electronics (semiconductors, single electrons transistors), non-linear optic devices, photo-electrochemistry to biomedicine, diagnostics, foods and environment, chemical analysis and others. Results: Two main avenues for nanoparticles synthesis: cell-free extract and cell cultivation have been reported. The state of art of both biotechnological approaches for different type nanoparticles are reviewed in this work. Conclusions: Nanotechnology is a revolutionary field just at its onset, the trend in the next decades being its integration with the green chemistry approach. Several strategies involving exhaustive strain selection, cultivation modes, recombinant gene expression, metabolic engineering, protein re-design and re-engineering, and predictive modeling will allow to create nanobioreactors, a new nanobiotechnology arena with a high potential impact in many fields.
Facultad de Ciencias Exactas
description Background: In the past decade, considerable attention has been paid for the development of novel strategies for the synthesis of different kind of nano-objects. Most of the current strategies are usually working by the use physical or chemical principles to develop a myriad of nano-objects with multiple applications. Main fields of nanotechnology applications range from catalysis, micro- and nano-electronics (semiconductors, single electrons transistors), non-linear optic devices, photo-electrochemistry to biomedicine, diagnostics, foods and environment, chemical analysis and others. Results: Two main avenues for nanoparticles synthesis: cell-free extract and cell cultivation have been reported. The state of art of both biotechnological approaches for different type nanoparticles are reviewed in this work. Conclusions: Nanotechnology is a revolutionary field just at its onset, the trend in the next decades being its integration with the green chemistry approach. Several strategies involving exhaustive strain selection, cultivation modes, recombinant gene expression, metabolic engineering, protein re-design and re-engineering, and predictive modeling will allow to create nanobioreactors, a new nanobiotechnology arena with a high potential impact in many fields.
publishDate 2013
dc.date.none.fl_str_mv 2013
dc.type.none.fl_str_mv info:eu-repo/semantics/review
info:eu-repo/semantics/publishedVersion
Revision
http://purl.org/coar/resource_type/c_dcae04bc
info:ar-repo/semantics/resenaArticulo
format review
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85531
url http://sedici.unlp.edu.ar/handle/10915/85531
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0717-3458
info:eu-repo/semantics/altIdentifier/doi/10.2225/vol16-issue3-fulltext-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978598815760384
score 13.084122