Streamlining the study of the Tierra del Fuego forest through the use of deep learning
- Autores
- Viera, Leonel; González, Federico; Soler, Rosina; Romano, Lucas; Feierherd, Guillermo Eugenio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Understanding plant-herbivorous relationships allows to optimize the way to manage and protect natural spaces. In this paper the study of this relationship in the ñire forests (Nothofagus antarctica) of the province of Tierra del Fuego (Argentina) is approached. Using trap cameras to monitor such interaction offers the opportunity to quickly collect large amounts of data. However, to take advantage of its potential, a large investment in trained personnel to analyze and filter the images of interest is required. The present work seeks to establish a path to significantly reduce this obstacle using the advances of machine and deep learning in the recognition of objects from images.
XVII Workshop Computación Gráfica, Imágenes y Visualización.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Machine learning
Deep learning
Computer vision
Trap cameras
Forests
Image recognition
Ñire
Antarctic nothofagus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/91024
Ver los metadatos del registro completo
id |
SEDICI_d4bfd59ec698a2f20a1e188e9fc89b20 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/91024 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Streamlining the study of the Tierra del Fuego forest through the use of deep learningViera, LeonelGonzález, FedericoSoler, RosinaRomano, LucasFeierherd, Guillermo EugenioCiencias InformáticasMachine learningDeep learningComputer visionTrap camerasForestsImage recognitionÑireAntarctic nothofagusUnderstanding plant-herbivorous relationships allows to optimize the way to manage and protect natural spaces. In this paper the study of this relationship in the ñire forests (Nothofagus antarctica) of the province of Tierra del Fuego (Argentina) is approached. Using trap cameras to monitor such interaction offers the opportunity to quickly collect large amounts of data. However, to take advantage of its potential, a large investment in trained personnel to analyze and filter the images of interest is required. The present work seeks to establish a path to significantly reduce this obstacle using the advances of machine and deep learning in the recognition of objects from images.XVII Workshop Computación Gráfica, Imágenes y Visualización.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf438-445http://sedici.unlp.edu.ar/handle/10915/91024enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:03Zoai:sedici.unlp.edu.ar:10915/91024Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:03.444SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
title |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
spellingShingle |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning Viera, Leonel Ciencias Informáticas Machine learning Deep learning Computer vision Trap cameras Forests Image recognition Ñire Antarctic nothofagus |
title_short |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
title_full |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
title_fullStr |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
title_full_unstemmed |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
title_sort |
Streamlining the study of the Tierra del Fuego forest through the use of deep learning |
dc.creator.none.fl_str_mv |
Viera, Leonel González, Federico Soler, Rosina Romano, Lucas Feierherd, Guillermo Eugenio |
author |
Viera, Leonel |
author_facet |
Viera, Leonel González, Federico Soler, Rosina Romano, Lucas Feierherd, Guillermo Eugenio |
author_role |
author |
author2 |
González, Federico Soler, Rosina Romano, Lucas Feierherd, Guillermo Eugenio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Machine learning Deep learning Computer vision Trap cameras Forests Image recognition Ñire Antarctic nothofagus |
topic |
Ciencias Informáticas Machine learning Deep learning Computer vision Trap cameras Forests Image recognition Ñire Antarctic nothofagus |
dc.description.none.fl_txt_mv |
Understanding plant-herbivorous relationships allows to optimize the way to manage and protect natural spaces. In this paper the study of this relationship in the ñire forests (Nothofagus antarctica) of the province of Tierra del Fuego (Argentina) is approached. Using trap cameras to monitor such interaction offers the opportunity to quickly collect large amounts of data. However, to take advantage of its potential, a large investment in trained personnel to analyze and filter the images of interest is required. The present work seeks to establish a path to significantly reduce this obstacle using the advances of machine and deep learning in the recognition of objects from images. XVII Workshop Computación Gráfica, Imágenes y Visualización. Red de Universidades con Carreras en Informática |
description |
Understanding plant-herbivorous relationships allows to optimize the way to manage and protect natural spaces. In this paper the study of this relationship in the ñire forests (Nothofagus antarctica) of the province of Tierra del Fuego (Argentina) is approached. Using trap cameras to monitor such interaction offers the opportunity to quickly collect large amounts of data. However, to take advantage of its potential, a large investment in trained personnel to analyze and filter the images of interest is required. The present work seeks to establish a path to significantly reduce this obstacle using the advances of machine and deep learning in the recognition of objects from images. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/91024 |
url |
http://sedici.unlp.edu.ar/handle/10915/91024 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 info:eu-repo/semantics/reference/hdl/10915/90359 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 438-445 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616064342687744 |
score |
13.070432 |