Harmonic Theory and Machine Learning
- Autores
- Nanclares, Jorge; Rapallini, Ulises Mario Alberto
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.
Facultad de Informática - Materia
-
Ciencias Informáticas
Computer Uses in Education
Neural nets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9564
Ver los metadatos del registro completo
| id |
SEDICI_d43107906884329fd92874d7e61dcdb6 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9564 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Harmonic Theory and Machine LearningNanclares, JorgeRapallini, Ulises Mario AlbertoCiencias InformáticasComputer Uses in EducationNeural netsA natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.Facultad de Informática2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf249-255http://sedici.unlp.edu.ar/handle/10915/9564enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct07-8.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:15:28Zoai:sedici.unlp.edu.ar:10915/9564Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:15:29.214SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Harmonic Theory and Machine Learning |
| title |
Harmonic Theory and Machine Learning |
| spellingShingle |
Harmonic Theory and Machine Learning Nanclares, Jorge Ciencias Informáticas Computer Uses in Education Neural nets |
| title_short |
Harmonic Theory and Machine Learning |
| title_full |
Harmonic Theory and Machine Learning |
| title_fullStr |
Harmonic Theory and Machine Learning |
| title_full_unstemmed |
Harmonic Theory and Machine Learning |
| title_sort |
Harmonic Theory and Machine Learning |
| dc.creator.none.fl_str_mv |
Nanclares, Jorge Rapallini, Ulises Mario Alberto |
| author |
Nanclares, Jorge |
| author_facet |
Nanclares, Jorge Rapallini, Ulises Mario Alberto |
| author_role |
author |
| author2 |
Rapallini, Ulises Mario Alberto |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Computer Uses in Education Neural nets |
| topic |
Ciencias Informáticas Computer Uses in Education Neural nets |
| dc.description.none.fl_txt_mv |
A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested. Facultad de Informática |
| description |
A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9564 |
| url |
http://sedici.unlp.edu.ar/handle/10915/9564 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct07-8.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 249-255 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605216608354304 |
| score |
13.25334 |