Harmonic Theory and Machine Learning

Autores
Nanclares, Jorge; Rapallini, Ulises Mario Alberto
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.
Facultad de Informática
Materia
Ciencias Informáticas
Computer Uses in Education
Neural nets
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9564

id SEDICI_d43107906884329fd92874d7e61dcdb6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9564
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Harmonic Theory and Machine LearningNanclares, JorgeRapallini, Ulises Mario AlbertoCiencias InformáticasComputer Uses in EducationNeural netsA natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.Facultad de Informática2007-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf249-255http://sedici.unlp.edu.ar/handle/10915/9564enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct07-8.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9564Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:44.397SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Harmonic Theory and Machine Learning
title Harmonic Theory and Machine Learning
spellingShingle Harmonic Theory and Machine Learning
Nanclares, Jorge
Ciencias Informáticas
Computer Uses in Education
Neural nets
title_short Harmonic Theory and Machine Learning
title_full Harmonic Theory and Machine Learning
title_fullStr Harmonic Theory and Machine Learning
title_full_unstemmed Harmonic Theory and Machine Learning
title_sort Harmonic Theory and Machine Learning
dc.creator.none.fl_str_mv Nanclares, Jorge
Rapallini, Ulises Mario Alberto
author Nanclares, Jorge
author_facet Nanclares, Jorge
Rapallini, Ulises Mario Alberto
author_role author
author2 Rapallini, Ulises Mario Alberto
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Computer Uses in Education
Neural nets
topic Ciencias Informáticas
Computer Uses in Education
Neural nets
dc.description.none.fl_txt_mv A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.
Facultad de Informática
description A natural inference mechanism is presented : the Black Box problem is transformed into a Dirichlet's problem on the closed cube. Then it is solved in closed polynomial form, together with a Mean-Value theorem and a Maximum Principle.A generalization to Polytopes and a reduction of any Dirichlet problem on compacta is mapp ed into a unit cub e in more dimensions.An algorithm for calculating the solution is suggested.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9564
url http://sedici.unlp.edu.ar/handle/10915/9564
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct07-8.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
249-255
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758326267904
score 13.070432