Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral

Autores
Zamudio, Eduardo
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La selección de grupos de expertos generalmente considera la evaluación de los criterios de selección que deben cumplir los candidatos y los grupos en sí mismos. Los criterios de selección representan un aspecto clave de los procesos de selección de expertos, ya que son estos criterios los que establecen qué candidato es un experto, o cómo se debe conformar un grupo de expertos. En esta tesis se propone un enfoque inteligente e integral para el problema de la selección de grupos de expertos compuesto por dos partes. Primero, se propone un método para la identificación y evaluación de criterios de selección de candidatos elegibiles a ocupar posiciones de expertos, utilizando descripciones de los candidatos como fuente de información. Segundo, se propone un método para la selección óptima de conformaciones de grupos de expertos, utilizando información relacional de los candidatos. Esta tesis introduce importantes contribuciones en el área de selección de expertos, incluyendo la aplicación de Aprendizaje Automático (ML) en la identificación de evidencia de experiencia; la aplicación de técnicas de Procesamiento de Lenguaje Natural (NLP) para determinar la similitud de criterios de selección; una nueva métrica de Análisis de Redes Sociales (SNA) para determinar la independencia de grupos; la aplicación de una estrategia multicriterio para la evaluación de grupos en redes sociales; y la implementación de un algoritmo evolutivo para la selección óptima de grupos de expertos. Las evaluaciones experimentales indican que la elegibilidad de un conjunto de candidatos puede ser determinada a partir del nivel de correspondencia semántica entre las evaluaciones de los candidatos y los criterios de selección de referencia. Asimismo, los resultados indican que es posible recomendar grupos de expertos con mejor desempeño al compararlos con los comités actuales, a partir del uso de información relacional.
Eje: Tesis Doctorales.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Procesamiento de Lenguaje Natural
selección de grupos de expertos
criterios de selección
aprendizaje automático
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/68697

id SEDICI_d1d21a483a015a1bdce3d05bb96e9659
oai_identifier_str oai:sedici.unlp.edu.ar:10915/68697
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis DoctoralZamudio, EduardoCiencias InformáticasProcesamiento de Lenguaje Naturalselección de grupos de expertoscriterios de selecciónaprendizaje automáticoLa selección de grupos de expertos generalmente considera la evaluación de los criterios de selección que deben cumplir los candidatos y los grupos en sí mismos. Los criterios de selección representan un aspecto clave de los procesos de selección de expertos, ya que son estos criterios los que establecen qué candidato es un experto, o cómo se debe conformar un grupo de expertos. En esta tesis se propone un enfoque inteligente e integral para el problema de la selección de grupos de expertos compuesto por dos partes. Primero, se propone un método para la identificación y evaluación de criterios de selección de candidatos elegibiles a ocupar posiciones de expertos, utilizando descripciones de los candidatos como fuente de información. Segundo, se propone un método para la selección óptima de conformaciones de grupos de expertos, utilizando información relacional de los candidatos. Esta tesis introduce importantes contribuciones en el área de selección de expertos, incluyendo la aplicación de Aprendizaje Automático (ML) en la identificación de evidencia de experiencia; la aplicación de técnicas de Procesamiento de Lenguaje Natural (NLP) para determinar la similitud de criterios de selección; una nueva métrica de Análisis de Redes Sociales (SNA) para determinar la independencia de grupos; la aplicación de una estrategia multicriterio para la evaluación de grupos en redes sociales; y la implementación de un algoritmo evolutivo para la selección óptima de grupos de expertos. Las evaluaciones experimentales indican que la elegibilidad de un conjunto de candidatos puede ser determinada a partir del nivel de correspondencia semántica entre las evaluaciones de los candidatos y los criterios de selección de referencia. Asimismo, los resultados indican que es posible recomendar grupos de expertos con mejor desempeño al compararlos con los comités actuales, a partir del uso de información relacional.Eje: Tesis Doctorales.Red de Universidades con Carreras en Informática2018-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1286-1295http://sedici.unlp.edu.ar/handle/10915/68697spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4info:eu-repo/semantics/reference/hdl/10915/67063info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:10:41Zoai:sedici.unlp.edu.ar:10915/68697Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:10:41.349SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
title Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
spellingShingle Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
Zamudio, Eduardo
Ciencias Informáticas
Procesamiento de Lenguaje Natural
selección de grupos de expertos
criterios de selección
aprendizaje automático
title_short Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
title_full Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
title_fullStr Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
title_full_unstemmed Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
title_sort Un enfoque inteligente para la selección de grupos de expertos mediante redes sociales : Resumen Tesis Doctoral
dc.creator.none.fl_str_mv Zamudio, Eduardo
author Zamudio, Eduardo
author_facet Zamudio, Eduardo
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Procesamiento de Lenguaje Natural
selección de grupos de expertos
criterios de selección
aprendizaje automático
topic Ciencias Informáticas
Procesamiento de Lenguaje Natural
selección de grupos de expertos
criterios de selección
aprendizaje automático
dc.description.none.fl_txt_mv La selección de grupos de expertos generalmente considera la evaluación de los criterios de selección que deben cumplir los candidatos y los grupos en sí mismos. Los criterios de selección representan un aspecto clave de los procesos de selección de expertos, ya que son estos criterios los que establecen qué candidato es un experto, o cómo se debe conformar un grupo de expertos. En esta tesis se propone un enfoque inteligente e integral para el problema de la selección de grupos de expertos compuesto por dos partes. Primero, se propone un método para la identificación y evaluación de criterios de selección de candidatos elegibiles a ocupar posiciones de expertos, utilizando descripciones de los candidatos como fuente de información. Segundo, se propone un método para la selección óptima de conformaciones de grupos de expertos, utilizando información relacional de los candidatos. Esta tesis introduce importantes contribuciones en el área de selección de expertos, incluyendo la aplicación de Aprendizaje Automático (ML) en la identificación de evidencia de experiencia; la aplicación de técnicas de Procesamiento de Lenguaje Natural (NLP) para determinar la similitud de criterios de selección; una nueva métrica de Análisis de Redes Sociales (SNA) para determinar la independencia de grupos; la aplicación de una estrategia multicriterio para la evaluación de grupos en redes sociales; y la implementación de un algoritmo evolutivo para la selección óptima de grupos de expertos. Las evaluaciones experimentales indican que la elegibilidad de un conjunto de candidatos puede ser determinada a partir del nivel de correspondencia semántica entre las evaluaciones de los candidatos y los criterios de selección de referencia. Asimismo, los resultados indican que es posible recomendar grupos de expertos con mejor desempeño al compararlos con los comités actuales, a partir del uso de información relacional.
Eje: Tesis Doctorales.
Red de Universidades con Carreras en Informática
description La selección de grupos de expertos generalmente considera la evaluación de los criterios de selección que deben cumplir los candidatos y los grupos en sí mismos. Los criterios de selección representan un aspecto clave de los procesos de selección de expertos, ya que son estos criterios los que establecen qué candidato es un experto, o cómo se debe conformar un grupo de expertos. En esta tesis se propone un enfoque inteligente e integral para el problema de la selección de grupos de expertos compuesto por dos partes. Primero, se propone un método para la identificación y evaluación de criterios de selección de candidatos elegibiles a ocupar posiciones de expertos, utilizando descripciones de los candidatos como fuente de información. Segundo, se propone un método para la selección óptima de conformaciones de grupos de expertos, utilizando información relacional de los candidatos. Esta tesis introduce importantes contribuciones en el área de selección de expertos, incluyendo la aplicación de Aprendizaje Automático (ML) en la identificación de evidencia de experiencia; la aplicación de técnicas de Procesamiento de Lenguaje Natural (NLP) para determinar la similitud de criterios de selección; una nueva métrica de Análisis de Redes Sociales (SNA) para determinar la independencia de grupos; la aplicación de una estrategia multicriterio para la evaluación de grupos en redes sociales; y la implementación de un algoritmo evolutivo para la selección óptima de grupos de expertos. Las evaluaciones experimentales indican que la elegibilidad de un conjunto de candidatos puede ser determinada a partir del nivel de correspondencia semántica entre las evaluaciones de los candidatos y los criterios de selección de referencia. Asimismo, los resultados indican que es posible recomendar grupos de expertos con mejor desempeño al compararlos con los comités actuales, a partir del uso de información relacional.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/68697
url http://sedici.unlp.edu.ar/handle/10915/68697
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4
info:eu-repo/semantics/reference/hdl/10915/67063
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1286-1295
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615975727529984
score 13.070432