Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA
- Autores
- Rucci, Enzo; García Sanchez, Carlos; Botella, Guillermo; De Giusti, Armando Eduardo; Naiouf, Marcelo; Prieto-Matias, Manuel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- With the greater importance of parallel architectures such as GPUs or Xeon Phi accelerators, the scientific community has developed efficient solutions in the bioinformatics field. In this context, FPGAs begin to stand out as high performance devices with moderate power consumption. This paper presents and evaluates a parallel strategy of the well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s FPGA for long DNA sequences. We efficiently exploit data and pipeline parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS in less than 25 watt power requirements.
Publicado en Lecture Notes in Computer Science book series (LNCS, vol. 10209).
Facultad de Informática - Materia
-
Ciencias Informáticas
Field Programmable Gate Array
Graphic Processor Unit
Field Programmable Gate Array Implementation
Latency Memory Access
Dedicated Memory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82872
Ver los metadatos del registro completo
id |
SEDICI_d06e568ef9c9432936fff3caf8bbf35c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82872 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGARucci, EnzoGarcía Sanchez, CarlosBotella, GuillermoDe Giusti, Armando EduardoNaiouf, MarceloPrieto-Matias, ManuelCiencias InformáticasField Programmable Gate ArrayGraphic Processor UnitField Programmable Gate Array ImplementationLatency Memory AccessDedicated MemoryWith the greater importance of parallel architectures such as GPUs or Xeon Phi accelerators, the scientific community has developed efficient solutions in the bioinformatics field. In this context, FPGAs begin to stand out as high performance devices with moderate power consumption. This paper presents and evaluates a parallel strategy of the well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s FPGA for long DNA sequences. We efficiently exploit data and pipeline parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS in less than 25 watt power requirements.Publicado en <i>Lecture Notes in Computer Science</i> book series (LNCS, vol. 10209).Facultad de Informática2017-04-27info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf500-511http://sedici.unlp.edu.ar/handle/10915/82872enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-319-56154-7info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-56154-7_45info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:36Zoai:sedici.unlp.edu.ar:10915/82872Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:37.197SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
title |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
spellingShingle |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA Rucci, Enzo Ciencias Informáticas Field Programmable Gate Array Graphic Processor Unit Field Programmable Gate Array Implementation Latency Memory Access Dedicated Memory |
title_short |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
title_full |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
title_fullStr |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
title_full_unstemmed |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
title_sort |
Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA |
dc.creator.none.fl_str_mv |
Rucci, Enzo García Sanchez, Carlos Botella, Guillermo De Giusti, Armando Eduardo Naiouf, Marcelo Prieto-Matias, Manuel |
author |
Rucci, Enzo |
author_facet |
Rucci, Enzo García Sanchez, Carlos Botella, Guillermo De Giusti, Armando Eduardo Naiouf, Marcelo Prieto-Matias, Manuel |
author_role |
author |
author2 |
García Sanchez, Carlos Botella, Guillermo De Giusti, Armando Eduardo Naiouf, Marcelo Prieto-Matias, Manuel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Field Programmable Gate Array Graphic Processor Unit Field Programmable Gate Array Implementation Latency Memory Access Dedicated Memory |
topic |
Ciencias Informáticas Field Programmable Gate Array Graphic Processor Unit Field Programmable Gate Array Implementation Latency Memory Access Dedicated Memory |
dc.description.none.fl_txt_mv |
With the greater importance of parallel architectures such as GPUs or Xeon Phi accelerators, the scientific community has developed efficient solutions in the bioinformatics field. In this context, FPGAs begin to stand out as high performance devices with moderate power consumption. This paper presents and evaluates a parallel strategy of the well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s FPGA for long DNA sequences. We efficiently exploit data and pipeline parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS in less than 25 watt power requirements. Publicado en <i>Lecture Notes in Computer Science</i> book series (LNCS, vol. 10209). Facultad de Informática |
description |
With the greater importance of parallel architectures such as GPUs or Xeon Phi accelerators, the scientific community has developed efficient solutions in the bioinformatics field. In this context, FPGAs begin to stand out as high performance devices with moderate power consumption. This paper presents and evaluates a parallel strategy of the well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s FPGA for long DNA sequences. We efficiently exploit data and pipeline parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS in less than 25 watt power requirements. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82872 |
url |
http://sedici.unlp.edu.ar/handle/10915/82872 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-319-56154-7 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-56154-7_45 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf 500-511 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616028344025088 |
score |
13.070432 |