Feature extraction and selection using statistical dependence criteria

Autores
Tomassi, Diego; Marx, Nicolás; Beauseroy, Pierre
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
Materia
Ciencias Informáticas
dimension reduction
variable selection
dependence measures
supervised learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56980

id SEDICI_d056b3fdf44f30e750ffad1bccfff58e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56980
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Feature extraction and selection using statistical dependence criteriaTomassi, DiegoMarx, NicolásBeauseroy, PierreCiencias Informáticasdimension reductionvariable selectiondependence measuressupervised learningDimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf142-149http://sedici.unlp.edu.ar/handle/10915/56980enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-03T10:24:49Zoai:sedici.unlp.edu.ar:10915/56980Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-03 10:24:49.454SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Feature extraction and selection using statistical dependence criteria
title Feature extraction and selection using statistical dependence criteria
spellingShingle Feature extraction and selection using statistical dependence criteria
Tomassi, Diego
Ciencias Informáticas
dimension reduction
variable selection
dependence measures
supervised learning
title_short Feature extraction and selection using statistical dependence criteria
title_full Feature extraction and selection using statistical dependence criteria
title_fullStr Feature extraction and selection using statistical dependence criteria
title_full_unstemmed Feature extraction and selection using statistical dependence criteria
title_sort Feature extraction and selection using statistical dependence criteria
dc.creator.none.fl_str_mv Tomassi, Diego
Marx, Nicolás
Beauseroy, Pierre
author Tomassi, Diego
author_facet Tomassi, Diego
Marx, Nicolás
Beauseroy, Pierre
author_role author
author2 Marx, Nicolás
Beauseroy, Pierre
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
dimension reduction
variable selection
dependence measures
supervised learning
topic Ciencias Informáticas
dimension reduction
variable selection
dependence measures
supervised learning
dc.description.none.fl_txt_mv Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
description Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56980
url http://sedici.unlp.edu.ar/handle/10915/56980
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdf
info:eu-repo/semantics/altIdentifier/issn/2451-7585
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.format.none.fl_str_mv application/pdf
142-149
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1850507660983533568
score 12.764688