Feature extraction and selection using statistical dependence criteria
- Autores
- Tomassi, Diego; Marx, Nicolás; Beauseroy, Pierre
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
dimension reduction
variable selection
dependence measures
supervised learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56980
Ver los metadatos del registro completo
| id |
SEDICI_d056b3fdf44f30e750ffad1bccfff58e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56980 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Feature extraction and selection using statistical dependence criteriaTomassi, DiegoMarx, NicolásBeauseroy, PierreCiencias Informáticasdimension reductionvariable selectiondependence measuressupervised learningDimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf142-149http://sedici.unlp.edu.ar/handle/10915/56980enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-03T10:24:49Zoai:sedici.unlp.edu.ar:10915/56980Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-03 10:24:49.454SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Feature extraction and selection using statistical dependence criteria |
| title |
Feature extraction and selection using statistical dependence criteria |
| spellingShingle |
Feature extraction and selection using statistical dependence criteria Tomassi, Diego Ciencias Informáticas dimension reduction variable selection dependence measures supervised learning |
| title_short |
Feature extraction and selection using statistical dependence criteria |
| title_full |
Feature extraction and selection using statistical dependence criteria |
| title_fullStr |
Feature extraction and selection using statistical dependence criteria |
| title_full_unstemmed |
Feature extraction and selection using statistical dependence criteria |
| title_sort |
Feature extraction and selection using statistical dependence criteria |
| dc.creator.none.fl_str_mv |
Tomassi, Diego Marx, Nicolás Beauseroy, Pierre |
| author |
Tomassi, Diego |
| author_facet |
Tomassi, Diego Marx, Nicolás Beauseroy, Pierre |
| author_role |
author |
| author2 |
Marx, Nicolás Beauseroy, Pierre |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas dimension reduction variable selection dependence measures supervised learning |
| topic |
Ciencias Informáticas dimension reduction variable selection dependence measures supervised learning |
| dc.description.none.fl_txt_mv |
Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
| description |
Dimensionality reduction using feature extraction and selection approaches is a common stage of many regression and classification tasks. In recent years there have been significant e orts to reduce the dimension of the feature space without lossing information that is relevant for prediction. This objective can be cast into a conditional independence condition between the response or class labels and the transformed features. Building on this, in this work we use measures of statistical dependence to estimate a lower-dimensional linear subspace of the features that retains the su cient information. Unlike likelihood-based and many momentbased methods, the proposed approach is semi-parametric and does not require model assumptions on the data. A regularized version to achieve simultaneous variable selection is presented too. Experiments with simulated data show that the performance of the proposed method compares favorably to well-known linear dimension reduction techniques. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56980 |
| url |
http://sedici.unlp.edu.ar/handle/10915/56980 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-13_0.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 142-149 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1850507660983533568 |
| score |
12.764688 |