Dimension reduction for hidden Markov models using the suficiency approach

Autores
Tomassi, Diego; Forzani, Liliana; Milone, Diego Humberto; Cook, R. Dennis
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Markov models
Dimension reduction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125252

id SEDICI_b8003d7e0a48b087d9e3b2fd80b8dc5d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125252
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dimension reduction for hidden Markov models using the suficiency approachTomassi, DiegoForzani, LilianaMilone, Diego HumbertoCook, R. DennisCiencias InformáticasMarkov modelsDimension reductionDimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf140-151http://sedici.unlp.edu.ar/handle/10915/125252enginfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:13Zoai:sedici.unlp.edu.ar:10915/125252Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:14.018SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dimension reduction for hidden Markov models using the suficiency approach
title Dimension reduction for hidden Markov models using the suficiency approach
spellingShingle Dimension reduction for hidden Markov models using the suficiency approach
Tomassi, Diego
Ciencias Informáticas
Markov models
Dimension reduction
title_short Dimension reduction for hidden Markov models using the suficiency approach
title_full Dimension reduction for hidden Markov models using the suficiency approach
title_fullStr Dimension reduction for hidden Markov models using the suficiency approach
title_full_unstemmed Dimension reduction for hidden Markov models using the suficiency approach
title_sort Dimension reduction for hidden Markov models using the suficiency approach
dc.creator.none.fl_str_mv Tomassi, Diego
Forzani, Liliana
Milone, Diego Humberto
Cook, R. Dennis
author Tomassi, Diego
author_facet Tomassi, Diego
Forzani, Liliana
Milone, Diego Humberto
Cook, R. Dennis
author_role author
author2 Forzani, Liliana
Milone, Diego Humberto
Cook, R. Dennis
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Markov models
Dimension reduction
topic Ciencias Informáticas
Markov models
Dimension reduction
dc.description.none.fl_txt_mv Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.
Sociedad Argentina de Informática e Investigación Operativa
description Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125252
url http://sedici.unlp.edu.ar/handle/10915/125252
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1850-2784
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
140-151
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260520303853568
score 13.13397