Dimension reduction for hidden Markov models using the suficiency approach
- Autores
- Tomassi, Diego; Forzani, Liliana; Milone, Diego Humberto; Cook, R. Dennis
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Markov models
Dimension reduction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125252
Ver los metadatos del registro completo
id |
SEDICI_b8003d7e0a48b087d9e3b2fd80b8dc5d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125252 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Dimension reduction for hidden Markov models using the suficiency approachTomassi, DiegoForzani, LilianaMilone, Diego HumbertoCook, R. DennisCiencias InformáticasMarkov modelsDimension reductionDimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf140-151http://sedici.unlp.edu.ar/handle/10915/125252enginfo:eu-repo/semantics/altIdentifier/issn/1850-2784info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:13Zoai:sedici.unlp.edu.ar:10915/125252Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:14.018SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Dimension reduction for hidden Markov models using the suficiency approach |
title |
Dimension reduction for hidden Markov models using the suficiency approach |
spellingShingle |
Dimension reduction for hidden Markov models using the suficiency approach Tomassi, Diego Ciencias Informáticas Markov models Dimension reduction |
title_short |
Dimension reduction for hidden Markov models using the suficiency approach |
title_full |
Dimension reduction for hidden Markov models using the suficiency approach |
title_fullStr |
Dimension reduction for hidden Markov models using the suficiency approach |
title_full_unstemmed |
Dimension reduction for hidden Markov models using the suficiency approach |
title_sort |
Dimension reduction for hidden Markov models using the suficiency approach |
dc.creator.none.fl_str_mv |
Tomassi, Diego Forzani, Liliana Milone, Diego Humberto Cook, R. Dennis |
author |
Tomassi, Diego |
author_facet |
Tomassi, Diego Forzani, Liliana Milone, Diego Humberto Cook, R. Dennis |
author_role |
author |
author2 |
Forzani, Liliana Milone, Diego Humberto Cook, R. Dennis |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Markov models Dimension reduction |
topic |
Ciencias Informáticas Markov models Dimension reduction |
dc.description.none.fl_txt_mv |
Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix. Sociedad Argentina de Informática e Investigación Operativa |
description |
Dimension reduction is often included in pattern recognizers based on hidden Markov models to lower the size of the models to estimate. Commonly used methods are heuristic in nature and do not take care of information retention after projection. In this paper, we present a new method based on the approach of suficient dimension reductions. It explicitly accounts for all the discriminative information available in the original features, while using a minimum number of linear combinations of them. We review the underlying theory and present an algorithm for the practical implementation of the proposed method. On the experimental side, we use simulations to illustrate its advantages over widely-used existing alternatives. In particular, we show that it performs as good as existing techniques when data is optimal according to the assumptions of those techniques, but signi cantly better for heteroscedastic data with no special structure on the covariance matrix. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125252 |
url |
http://sedici.unlp.edu.ar/handle/10915/125252 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1850-2784 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 140-151 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260520303853568 |
score |
13.13397 |