A hybrid wrapper/filter approach for feature subset selection
- Autores
- Prati, Ronaldo C.; Batista, Gustavo E. A. P. A.; Monard, Maria Carolina
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Feature Subset Selection
Wrapper
Filter
Machine Learning
Data Mining - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135449
Ver los metadatos del registro completo
id |
SEDICI_8424ee7ad1162329e139b921e69dcefc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135449 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A hybrid wrapper/filter approach for feature subset selectionPrati, Ronaldo C.Batista, Gustavo E. A. P. A.Monard, Maria CarolinaCiencias InformáticasFeature Subset SelectionWrapperFilterMachine LearningData MiningThis work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.Sociedad Argentina de Informática e Investigación Operativa2008-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12-24http://sedici.unlp.edu.ar/handle/10915/135449enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/96info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:34:01Zoai:sedici.unlp.edu.ar:10915/135449Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:34:01.679SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A hybrid wrapper/filter approach for feature subset selection |
title |
A hybrid wrapper/filter approach for feature subset selection |
spellingShingle |
A hybrid wrapper/filter approach for feature subset selection Prati, Ronaldo C. Ciencias Informáticas Feature Subset Selection Wrapper Filter Machine Learning Data Mining |
title_short |
A hybrid wrapper/filter approach for feature subset selection |
title_full |
A hybrid wrapper/filter approach for feature subset selection |
title_fullStr |
A hybrid wrapper/filter approach for feature subset selection |
title_full_unstemmed |
A hybrid wrapper/filter approach for feature subset selection |
title_sort |
A hybrid wrapper/filter approach for feature subset selection |
dc.creator.none.fl_str_mv |
Prati, Ronaldo C. Batista, Gustavo E. A. P. A. Monard, Maria Carolina |
author |
Prati, Ronaldo C. |
author_facet |
Prati, Ronaldo C. Batista, Gustavo E. A. P. A. Monard, Maria Carolina |
author_role |
author |
author2 |
Batista, Gustavo E. A. P. A. Monard, Maria Carolina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Feature Subset Selection Wrapper Filter Machine Learning Data Mining |
topic |
Ciencias Informáticas Feature Subset Selection Wrapper Filter Machine Learning Data Mining |
dc.description.none.fl_txt_mv |
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features. Sociedad Argentina de Informática e Investigación Operativa |
description |
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135449 |
url |
http://sedici.unlp.edu.ar/handle/10915/135449 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/96 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 12-24 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616220148498432 |
score |
13.069144 |