A hybrid wrapper/filter approach for feature subset selection

Autores
Prati, Ronaldo C.; Batista, Gustavo E. A. P. A.; Monard, Maria Carolina
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Feature Subset Selection
Wrapper
Filter
Machine Learning
Data Mining
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/135449

id SEDICI_8424ee7ad1162329e139b921e69dcefc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/135449
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A hybrid wrapper/filter approach for feature subset selectionPrati, Ronaldo C.Batista, Gustavo E. A. P. A.Monard, Maria CarolinaCiencias InformáticasFeature Subset SelectionWrapperFilterMachine LearningData MiningThis work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.Sociedad Argentina de Informática e Investigación Operativa2008-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf12-24http://sedici.unlp.edu.ar/handle/10915/135449enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/96info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:34:01Zoai:sedici.unlp.edu.ar:10915/135449Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:34:01.679SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A hybrid wrapper/filter approach for feature subset selection
title A hybrid wrapper/filter approach for feature subset selection
spellingShingle A hybrid wrapper/filter approach for feature subset selection
Prati, Ronaldo C.
Ciencias Informáticas
Feature Subset Selection
Wrapper
Filter
Machine Learning
Data Mining
title_short A hybrid wrapper/filter approach for feature subset selection
title_full A hybrid wrapper/filter approach for feature subset selection
title_fullStr A hybrid wrapper/filter approach for feature subset selection
title_full_unstemmed A hybrid wrapper/filter approach for feature subset selection
title_sort A hybrid wrapper/filter approach for feature subset selection
dc.creator.none.fl_str_mv Prati, Ronaldo C.
Batista, Gustavo E. A. P. A.
Monard, Maria Carolina
author Prati, Ronaldo C.
author_facet Prati, Ronaldo C.
Batista, Gustavo E. A. P. A.
Monard, Maria Carolina
author_role author
author2 Batista, Gustavo E. A. P. A.
Monard, Maria Carolina
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Feature Subset Selection
Wrapper
Filter
Machine Learning
Data Mining
topic Ciencias Informáticas
Feature Subset Selection
Wrapper
Filter
Machine Learning
Data Mining
dc.description.none.fl_txt_mv This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.
Sociedad Argentina de Informática e Investigación Operativa
description This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(M) runs. Experimental results using 14 datasets show that, for most of the datasets, the AUC assessed using the reduced feature set is comparable to the AUC of the model constructed using all the features. Furthermore, the algorithm archieved a good reduction in the number of features.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/135449
url http://sedici.unlp.edu.ar/handle/10915/135449
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/96
info:eu-repo/semantics/altIdentifier/issn/1514-6774
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
12-24
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616220148498432
score 13.069144