Necessary Conditions for Interpolation by Multivariate Polynomials

Autores
Antezana, Jorge Abel; Marzo, Jordi; Ortega Cerdà, Joaquim
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.
Facultad de Ciencias Exactas
Materia
Matemática
Ciencias Exactas
Interpolating sequences
Multivariate polynomials
Reproducing kernels
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140442

id SEDICI_d040dff7eacd59804164245b26e5feae
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140442
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Necessary Conditions for Interpolation by Multivariate PolynomialsAntezana, Jorge AbelMarzo, JordiOrtega Cerdà, JoaquimMatemáticaCiencias ExactasInterpolating sequencesMultivariate polynomialsReproducing kernelsLet Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.Facultad de Ciencias Exactas2021-08-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-19http://sedici.unlp.edu.ar/handle/10915/140442enginfo:eu-repo/semantics/altIdentifier/issn/1617-9447info:eu-repo/semantics/altIdentifier/issn/2195-3724info:eu-repo/semantics/altIdentifier/doi/10.1007/s40315-021-00410-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:23:59Zoai:sedici.unlp.edu.ar:10915/140442Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:23:59.376SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Necessary Conditions for Interpolation by Multivariate Polynomials
title Necessary Conditions for Interpolation by Multivariate Polynomials
spellingShingle Necessary Conditions for Interpolation by Multivariate Polynomials
Antezana, Jorge Abel
Matemática
Ciencias Exactas
Interpolating sequences
Multivariate polynomials
Reproducing kernels
title_short Necessary Conditions for Interpolation by Multivariate Polynomials
title_full Necessary Conditions for Interpolation by Multivariate Polynomials
title_fullStr Necessary Conditions for Interpolation by Multivariate Polynomials
title_full_unstemmed Necessary Conditions for Interpolation by Multivariate Polynomials
title_sort Necessary Conditions for Interpolation by Multivariate Polynomials
dc.creator.none.fl_str_mv Antezana, Jorge Abel
Marzo, Jordi
Ortega Cerdà, Joaquim
author Antezana, Jorge Abel
author_facet Antezana, Jorge Abel
Marzo, Jordi
Ortega Cerdà, Joaquim
author_role author
author2 Marzo, Jordi
Ortega Cerdà, Joaquim
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Ciencias Exactas
Interpolating sequences
Multivariate polynomials
Reproducing kernels
topic Matemática
Ciencias Exactas
Interpolating sequences
Multivariate polynomials
Reproducing kernels
dc.description.none.fl_txt_mv Let Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.
Facultad de Ciencias Exactas
description Let Ω be a smooth, bounded, convex domain in Rn and let Λk be a finite subset of Ω. We find necessary geometric conditions for Λk to be interpolating for the space of multivariate polynomials of degree at most k. Our results are asymptotic in k. The density conditions obtained match precisely the necessary geometric conditions that sampling sets are known to satisfy and are expressed in terms of the equilibrium potential of the convex set. Moreover we prove that in the particular case of the unit ball, for k large enough, there are no bases of orthogonal reproducing kernels in the space of polynomials of degree at most k.
publishDate 2021
dc.date.none.fl_str_mv 2021-08-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140442
url http://sedici.unlp.edu.ar/handle/10915/140442
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1617-9447
info:eu-repo/semantics/altIdentifier/issn/2195-3724
info:eu-repo/semantics/altIdentifier/doi/10.1007/s40315-021-00410-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
1-19
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064294193528832
score 13.22299