Evolutionary optimization in dynamic fitness landscape environments
- Autores
- Aragón, Victoria S.; Esquivel, Susana Cecilia
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Evolutionary computation
multi-modal optimization
random inmigrants
macromutation
dynamic fitness landscape
Environments
Optimization
ARTIFICIAL INTELLIGENCE
Intelligent agents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22732
Ver los metadatos del registro completo
id |
SEDICI_cf5e62b8614055371b1024a7b53732a0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22732 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolutionary optimization in dynamic fitness landscape environmentsAragón, Victoria S.Esquivel, Susana CeciliaCiencias InformáticasEvolutionary computationmulti-modal optimizationrandom inmigrantsmacromutationdynamic fitness landscapeEnvironmentsOptimizationARTIFICIAL INTELLIGENCEIntelligent agentsNon-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf637-647http://sedici.unlp.edu.ar/handle/10915/22732enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:47Zoai:sedici.unlp.edu.ar:10915/22732Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:47.716SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolutionary optimization in dynamic fitness landscape environments |
title |
Evolutionary optimization in dynamic fitness landscape environments |
spellingShingle |
Evolutionary optimization in dynamic fitness landscape environments Aragón, Victoria S. Ciencias Informáticas Evolutionary computation multi-modal optimization random inmigrants macromutation dynamic fitness landscape Environments Optimization ARTIFICIAL INTELLIGENCE Intelligent agents |
title_short |
Evolutionary optimization in dynamic fitness landscape environments |
title_full |
Evolutionary optimization in dynamic fitness landscape environments |
title_fullStr |
Evolutionary optimization in dynamic fitness landscape environments |
title_full_unstemmed |
Evolutionary optimization in dynamic fitness landscape environments |
title_sort |
Evolutionary optimization in dynamic fitness landscape environments |
dc.creator.none.fl_str_mv |
Aragón, Victoria S. Esquivel, Susana Cecilia |
author |
Aragón, Victoria S. |
author_facet |
Aragón, Victoria S. Esquivel, Susana Cecilia |
author_role |
author |
author2 |
Esquivel, Susana Cecilia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Evolutionary computation multi-modal optimization random inmigrants macromutation dynamic fitness landscape Environments Optimization ARTIFICIAL INTELLIGENCE Intelligent agents |
topic |
Ciencias Informáticas Evolutionary computation multi-modal optimization random inmigrants macromutation dynamic fitness landscape Environments Optimization ARTIFICIAL INTELLIGENCE Intelligent agents |
dc.description.none.fl_txt_mv |
Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained. Eje: Agentes y Sistemas Inteligentes (ASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22732 |
url |
http://sedici.unlp.edu.ar/handle/10915/22732 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 637-647 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063904422100992 |
score |
13.22299 |