Evolutionary optimization in dynamic fitness landscape environments

Autores
Aragón, Victoria S.; Esquivel, Susana Cecilia
Año de publicación
2003
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Evolutionary computation
multi-modal optimization
random inmigrants
macromutation
dynamic fitness landscape
Environments
Optimization
ARTIFICIAL INTELLIGENCE
Intelligent agents
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22732

id SEDICI_cf5e62b8614055371b1024a7b53732a0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22732
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evolutionary optimization in dynamic fitness landscape environmentsAragón, Victoria S.Esquivel, Susana CeciliaCiencias InformáticasEvolutionary computationmulti-modal optimizationrandom inmigrantsmacromutationdynamic fitness landscapeEnvironmentsOptimizationARTIFICIAL INTELLIGENCEIntelligent agentsNon-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf637-647http://sedici.unlp.edu.ar/handle/10915/22732enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:47Zoai:sedici.unlp.edu.ar:10915/22732Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:47.716SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evolutionary optimization in dynamic fitness landscape environments
title Evolutionary optimization in dynamic fitness landscape environments
spellingShingle Evolutionary optimization in dynamic fitness landscape environments
Aragón, Victoria S.
Ciencias Informáticas
Evolutionary computation
multi-modal optimization
random inmigrants
macromutation
dynamic fitness landscape
Environments
Optimization
ARTIFICIAL INTELLIGENCE
Intelligent agents
title_short Evolutionary optimization in dynamic fitness landscape environments
title_full Evolutionary optimization in dynamic fitness landscape environments
title_fullStr Evolutionary optimization in dynamic fitness landscape environments
title_full_unstemmed Evolutionary optimization in dynamic fitness landscape environments
title_sort Evolutionary optimization in dynamic fitness landscape environments
dc.creator.none.fl_str_mv Aragón, Victoria S.
Esquivel, Susana Cecilia
author Aragón, Victoria S.
author_facet Aragón, Victoria S.
Esquivel, Susana Cecilia
author_role author
author2 Esquivel, Susana Cecilia
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Evolutionary computation
multi-modal optimization
random inmigrants
macromutation
dynamic fitness landscape
Environments
Optimization
ARTIFICIAL INTELLIGENCE
Intelligent agents
topic Ciencias Informáticas
Evolutionary computation
multi-modal optimization
random inmigrants
macromutation
dynamic fitness landscape
Environments
Optimization
ARTIFICIAL INTELLIGENCE
Intelligent agents
dc.description.none.fl_txt_mv Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Non-stationary, or dynamic, problems change over time. There exist a variety of forms of dynamism. The concept of dynamic environments in the context of this paper means that the fitness landscape changes during the run of an evolutionary algorithm. Genetic diversity is crucial to provide the necessary adaptability of the algorithm to unexpected changes. Two key concepts to maintain genetic diversity in the population are incorporated to the algorithm and proposed here: macromutation operators and random immigrants. The algorithm was tested on a set of dynamic testing functions provided by a dynamic fitness problem generator. The main goal was to determine the algorithm ability to face changes and dimensional or multimodal scalability in the functions. The effectiveness and limitations of the proposed algorithm in diverse scenarios of a dynamic environment is discussed from results empirically obtained.
publishDate 2003
dc.date.none.fl_str_mv 2003-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22732
url http://sedici.unlp.edu.ar/handle/10915/22732
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
637-647
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063904422100992
score 13.22299