Numerical simulation of two-phase fluid flow

Autores
Carcione, J. M.; Picotti, S.; Santos, Juan Enrique; Qadrouh, A.; Almalki, H. S.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Diffusion
Fourier method
Pressure
Richards equation
Saturation
Two-phase flow
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85033

id SEDICI_cf3abf4b8476c0d86d4a313813dba34c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85033
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Numerical simulation of two-phase fluid flowCarcione, J. M.Picotti, S.Santos, Juan EnriqueQadrouh, A.Almalki, H. S.Ciencias AstronómicasDiffusionFourier methodPressureRichards equationSaturationTwo-phase flowWe simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.Facultad de Ciencias Astronómicas y Geofísicas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf233-243http://sedici.unlp.edu.ar/handle/10915/85033enginfo:eu-repo/semantics/altIdentifier/issn/2190-0558info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:08:16Zoai:sedici.unlp.edu.ar:10915/85033Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:08:16.91SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Numerical simulation of two-phase fluid flow
title Numerical simulation of two-phase fluid flow
spellingShingle Numerical simulation of two-phase fluid flow
Carcione, J. M.
Ciencias Astronómicas
Diffusion
Fourier method
Pressure
Richards equation
Saturation
Two-phase flow
title_short Numerical simulation of two-phase fluid flow
title_full Numerical simulation of two-phase fluid flow
title_fullStr Numerical simulation of two-phase fluid flow
title_full_unstemmed Numerical simulation of two-phase fluid flow
title_sort Numerical simulation of two-phase fluid flow
dc.creator.none.fl_str_mv Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
Qadrouh, A.
Almalki, H. S.
author Carcione, J. M.
author_facet Carcione, J. M.
Picotti, S.
Santos, Juan Enrique
Qadrouh, A.
Almalki, H. S.
author_role author
author2 Picotti, S.
Santos, Juan Enrique
Qadrouh, A.
Almalki, H. S.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Diffusion
Fourier method
Pressure
Richards equation
Saturation
Two-phase flow
topic Ciencias Astronómicas
Diffusion
Fourier method
Pressure
Richards equation
Saturation
Two-phase flow
dc.description.none.fl_txt_mv We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Facultad de Ciencias Astronómicas y Geofísicas
description We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85033
url http://sedici.unlp.edu.ar/handle/10915/85033
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2190-0558
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
233-243
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064139054612480
score 13.22299