Numerical simulation of two-phase fluid flow
- Autores
- Carcione, J. M.; Picotti, S.; Santos, Juan Enrique; Qadrouh, A.; Almalki, H. S.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Diffusion
Fourier method
Pressure
Richards equation
Saturation
Two-phase flow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85033
Ver los metadatos del registro completo
id |
SEDICI_cf3abf4b8476c0d86d4a313813dba34c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85033 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Numerical simulation of two-phase fluid flowCarcione, J. M.Picotti, S.Santos, Juan EnriqueQadrouh, A.Almalki, H. S.Ciencias AstronómicasDiffusionFourier methodPressureRichards equationSaturationTwo-phase flowWe simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.Facultad de Ciencias Astronómicas y Geofísicas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf233-243http://sedici.unlp.edu.ar/handle/10915/85033enginfo:eu-repo/semantics/altIdentifier/issn/2190-0558info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:08:16Zoai:sedici.unlp.edu.ar:10915/85033Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:08:16.91SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Numerical simulation of two-phase fluid flow |
title |
Numerical simulation of two-phase fluid flow |
spellingShingle |
Numerical simulation of two-phase fluid flow Carcione, J. M. Ciencias Astronómicas Diffusion Fourier method Pressure Richards equation Saturation Two-phase flow |
title_short |
Numerical simulation of two-phase fluid flow |
title_full |
Numerical simulation of two-phase fluid flow |
title_fullStr |
Numerical simulation of two-phase fluid flow |
title_full_unstemmed |
Numerical simulation of two-phase fluid flow |
title_sort |
Numerical simulation of two-phase fluid flow |
dc.creator.none.fl_str_mv |
Carcione, J. M. Picotti, S. Santos, Juan Enrique Qadrouh, A. Almalki, H. S. |
author |
Carcione, J. M. |
author_facet |
Carcione, J. M. Picotti, S. Santos, Juan Enrique Qadrouh, A. Almalki, H. S. |
author_role |
author |
author2 |
Picotti, S. Santos, Juan Enrique Qadrouh, A. Almalki, H. S. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Diffusion Fourier method Pressure Richards equation Saturation Two-phase flow |
topic |
Ciencias Astronómicas Diffusion Fourier method Pressure Richards equation Saturation Two-phase flow |
dc.description.none.fl_txt_mv |
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85033 |
url |
http://sedici.unlp.edu.ar/handle/10915/85033 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2190-0558 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 233-243 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064139054612480 |
score |
13.22299 |