Chaos in wavy-stratified fluid-fluid flow
- Autores
- Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.
Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados Unidos
Fil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados Unidos
Fil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados Unidos - Materia
-
TWO-PHASE FLOW
STARTIFIED FLOW
LYAPUNOV EXPONENT
CORRELATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119553
Ver los metadatos del registro completo
id |
CONICETDig_7edbd63b4c5d9487ad1bf44992f84bef |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chaos in wavy-stratified fluid-fluid flowVaidheeswaran, AvinashClausse, AlejandroFullmer, William D.Marino, RaúlLópez de Bertodano, MartínTWO-PHASE FLOWSTARTIFIED FLOWLYAPUNOV EXPONENTCORRELATIONhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados UnidosFil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados UnidosFil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados UnidosAmerican Institute of Physics2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119553Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-71054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5055782info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5055782info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:32Zoai:ri.conicet.gov.ar:11336/119553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:32.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chaos in wavy-stratified fluid-fluid flow |
title |
Chaos in wavy-stratified fluid-fluid flow |
spellingShingle |
Chaos in wavy-stratified fluid-fluid flow Vaidheeswaran, Avinash TWO-PHASE FLOW STARTIFIED FLOW LYAPUNOV EXPONENT CORRELATION |
title_short |
Chaos in wavy-stratified fluid-fluid flow |
title_full |
Chaos in wavy-stratified fluid-fluid flow |
title_fullStr |
Chaos in wavy-stratified fluid-fluid flow |
title_full_unstemmed |
Chaos in wavy-stratified fluid-fluid flow |
title_sort |
Chaos in wavy-stratified fluid-fluid flow |
dc.creator.none.fl_str_mv |
Vaidheeswaran, Avinash Clausse, Alejandro Fullmer, William D. Marino, Raúl López de Bertodano, Martín |
author |
Vaidheeswaran, Avinash |
author_facet |
Vaidheeswaran, Avinash Clausse, Alejandro Fullmer, William D. Marino, Raúl López de Bertodano, Martín |
author_role |
author |
author2 |
Clausse, Alejandro Fullmer, William D. Marino, Raúl López de Bertodano, Martín |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
TWO-PHASE FLOW STARTIFIED FLOW LYAPUNOV EXPONENT CORRELATION |
topic |
TWO-PHASE FLOW STARTIFIED FLOW LYAPUNOV EXPONENT CORRELATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI. Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados Unidos Fil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina Fil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados Unidos Fil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados Unidos |
description |
We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119553 Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-7 1054-1500 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119553 |
identifier_str_mv |
Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-7 1054-1500 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5055782 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5055782 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981122552627200 |
score |
12.48226 |