Chaos in wavy-stratified fluid-fluid flow

Autores
Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.
Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados Unidos
Fil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados Unidos
Fil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados Unidos
Materia
TWO-PHASE FLOW
STARTIFIED FLOW
LYAPUNOV EXPONENT
CORRELATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119553

id CONICETDig_7edbd63b4c5d9487ad1bf44992f84bef
oai_identifier_str oai:ri.conicet.gov.ar:11336/119553
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chaos in wavy-stratified fluid-fluid flowVaidheeswaran, AvinashClausse, AlejandroFullmer, William D.Marino, RaúlLópez de Bertodano, MartínTWO-PHASE FLOWSTARTIFIED FLOWLYAPUNOV EXPONENTCORRELATIONhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados UnidosFil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados UnidosFil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados UnidosAmerican Institute of Physics2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119553Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-71054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5055782info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5055782info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:32Zoai:ri.conicet.gov.ar:11336/119553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:32.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chaos in wavy-stratified fluid-fluid flow
title Chaos in wavy-stratified fluid-fluid flow
spellingShingle Chaos in wavy-stratified fluid-fluid flow
Vaidheeswaran, Avinash
TWO-PHASE FLOW
STARTIFIED FLOW
LYAPUNOV EXPONENT
CORRELATION
title_short Chaos in wavy-stratified fluid-fluid flow
title_full Chaos in wavy-stratified fluid-fluid flow
title_fullStr Chaos in wavy-stratified fluid-fluid flow
title_full_unstemmed Chaos in wavy-stratified fluid-fluid flow
title_sort Chaos in wavy-stratified fluid-fluid flow
dc.creator.none.fl_str_mv Vaidheeswaran, Avinash
Clausse, Alejandro
Fullmer, William D.
Marino, Raúl
López de Bertodano, Martín
author Vaidheeswaran, Avinash
author_facet Vaidheeswaran, Avinash
Clausse, Alejandro
Fullmer, William D.
Marino, Raúl
López de Bertodano, Martín
author_role author
author2 Clausse, Alejandro
Fullmer, William D.
Marino, Raúl
López de Bertodano, Martín
author2_role author
author
author
author
dc.subject.none.fl_str_mv TWO-PHASE FLOW
STARTIFIED FLOW
LYAPUNOV EXPONENT
CORRELATION
topic TWO-PHASE FLOW
STARTIFIED FLOW
LYAPUNOV EXPONENT
CORRELATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.
Fil: Vaidheeswaran, Avinash. National Energy Technology Laboratory; Estados Unidos. West Virginia University Research Corporation; Estados Unidos
Fil: Clausse, Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Fullmer, William D.. National Energy Technology Laboratory; Estados Unidos. Leidos; Estados Unidos
Fil: Marino, Raúl. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: López de Bertodano, Martín. Purdue University. School Of Nuclear Engineering; Estados Unidos
description We perform a nonlinear analysis of a fluid-fluid wavy-stratified flow using a simplified two-fluid model (TFM), i.e., the fixed-flux model (FFM), which is an adaptation of the shallow water theory for the two-layer problem. Linear analysis using the perturbation method illustrates the short-wave physics leading to the Kelvin-Helmholtz instability (KHI). The interface dynamics are chaotic, and analysis beyond the onset of instability is required to understand the nonlinear evolution of waves. The two-equation FFM solver based on a higher-order spatiotemporal finite difference scheme is used in the current simulations. The solution methodology is verified, and the results are compared with the measurements from a laboratory-scale experiment. The finite-time Lyapunov exponent (FTLE) based on simulations is comparable and slightly higher than the autocorrelation function decay rate, consistent with previous findings. Furthermore, the FTLE is observed to be a strong function of the angle of inclination, while the root mean square of the interface height exhibits a square-root dependence. It is demonstrated that this simple 1-D FFM captures the essential chaotic features of the interface dynamics. This study also adds to a growing body of work indicating that a TFM with appropriate short wavelength physics is well-behaved and chaotic beyond the KHI.
publishDate 2019
dc.date.none.fl_str_mv 2019-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119553
Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-7
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119553
identifier_str_mv Vaidheeswaran, Avinash; Clausse, Alejandro; Fullmer, William D.; Marino, Raúl; López de Bertodano, Martín; Chaos in wavy-stratified fluid-fluid flow; American Institute of Physics; Chaos; 29; 3; 3-2019; 1-7
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5055782
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5055782
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981122552627200
score 12.48226