Numerical simulation of two-phase fluid flow

Autores
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos
Fil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia Saudita
Fil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia Saudita
Materia
DIFFUSION
FOURIER METHOD
PRESSURE
RICHARDS EQUATION
SATURATION
TWO-PHASE FLOW
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88830

id CONICETDig_58986552f2840b379fef8502f26dfad5
oai_identifier_str oai:ri.conicet.gov.ar:11336/88830
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Numerical simulation of two-phase fluid flowCarcione, Jose M.Picotti, StefanoSantos, Juan EnriqueQadrouh, AymanAlmalki, Hashim S.DIFFUSIONFOURIER METHODPRESSURERICHARDS EQUATIONSATURATIONTWO-PHASE FLOWhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados UnidosFil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia SauditaFil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia SauditaSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88830Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-2432190-0566CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:58Zoai:ri.conicet.gov.ar:11336/88830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:58.608CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Numerical simulation of two-phase fluid flow
title Numerical simulation of two-phase fluid flow
spellingShingle Numerical simulation of two-phase fluid flow
Carcione, Jose M.
DIFFUSION
FOURIER METHOD
PRESSURE
RICHARDS EQUATION
SATURATION
TWO-PHASE FLOW
title_short Numerical simulation of two-phase fluid flow
title_full Numerical simulation of two-phase fluid flow
title_fullStr Numerical simulation of two-phase fluid flow
title_full_unstemmed Numerical simulation of two-phase fluid flow
title_sort Numerical simulation of two-phase fluid flow
dc.creator.none.fl_str_mv Carcione, Jose M.
Picotti, Stefano
Santos, Juan Enrique
Qadrouh, Ayman
Almalki, Hashim S.
author Carcione, Jose M.
author_facet Carcione, Jose M.
Picotti, Stefano
Santos, Juan Enrique
Qadrouh, Ayman
Almalki, Hashim S.
author_role author
author2 Picotti, Stefano
Santos, Juan Enrique
Qadrouh, Ayman
Almalki, Hashim S.
author2_role author
author
author
author
dc.subject.none.fl_str_mv DIFFUSION
FOURIER METHOD
PRESSURE
RICHARDS EQUATION
SATURATION
TWO-PHASE FLOW
topic DIFFUSION
FOURIER METHOD
PRESSURE
RICHARDS EQUATION
SATURATION
TWO-PHASE FLOW
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos
Fil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia Saudita
Fil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia Saudita
description We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88830
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-243
2190-0566
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88830
identifier_str_mv Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-243
2190-0566
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-y
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13202-014-0109-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614118372278272
score 13.070432