Numerical simulation of two-phase fluid flow
- Autores
- Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.
Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia
Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos
Fil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia Saudita
Fil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia Saudita - Materia
-
DIFFUSION
FOURIER METHOD
PRESSURE
RICHARDS EQUATION
SATURATION
TWO-PHASE FLOW - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88830
Ver los metadatos del registro completo
id |
CONICETDig_58986552f2840b379fef8502f26dfad5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88830 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Numerical simulation of two-phase fluid flowCarcione, Jose M.Picotti, StefanoSantos, Juan EnriqueQadrouh, AymanAlmalki, Hashim S.DIFFUSIONFOURIER METHODPRESSURERICHARDS EQUATIONSATURATIONTWO-PHASE FLOWhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium.Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados UnidosFil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia SauditaFil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia SauditaSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88830Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-2432190-0566CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13202-014-0109-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:58Zoai:ri.conicet.gov.ar:11336/88830instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:58.608CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Numerical simulation of two-phase fluid flow |
title |
Numerical simulation of two-phase fluid flow |
spellingShingle |
Numerical simulation of two-phase fluid flow Carcione, Jose M. DIFFUSION FOURIER METHOD PRESSURE RICHARDS EQUATION SATURATION TWO-PHASE FLOW |
title_short |
Numerical simulation of two-phase fluid flow |
title_full |
Numerical simulation of two-phase fluid flow |
title_fullStr |
Numerical simulation of two-phase fluid flow |
title_full_unstemmed |
Numerical simulation of two-phase fluid flow |
title_sort |
Numerical simulation of two-phase fluid flow |
dc.creator.none.fl_str_mv |
Carcione, Jose M. Picotti, Stefano Santos, Juan Enrique Qadrouh, Ayman Almalki, Hashim S. |
author |
Carcione, Jose M. |
author_facet |
Carcione, Jose M. Picotti, Stefano Santos, Juan Enrique Qadrouh, Ayman Almalki, Hashim S. |
author_role |
author |
author2 |
Picotti, Stefano Santos, Juan Enrique Qadrouh, Ayman Almalki, Hashim S. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DIFFUSION FOURIER METHOD PRESSURE RICHARDS EQUATION SATURATION TWO-PHASE FLOW |
topic |
DIFFUSION FOURIER METHOD PRESSURE RICHARDS EQUATION SATURATION TWO-PHASE FLOW |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium. Fil: Carcione, Jose M.. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Picotti, Stefano. Instituto Nazionale di Oceanografia e di Geofisica Sperimentale; Italia Fil: Santos, Juan Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto del Gas y del Petróleo; Argentina. Universidad Nacional de La Plata; Argentina. Purdue University; Estados Unidos Fil: Qadrouh, Ayman. King Abdulaziz City For Science And Technology; Arabia Saudita Fil: Almalki, Hashim S.. King Abdulaziz City For Science And Technology; Arabia Saudita |
description |
We simulate two-phase fluid flow using a stress–strain relation based on Biot’s theory of poroelasticity for partial saturation combined with the mass conservation equations. To uncouple flow and elastic strain, we use a correction to the stiffness of the medium under conditions of uniaxial strain. The pressure and saturation differential equations are then solved with an explicit time stepping scheme and the Fourier pseudospectral method to compute the spatial derivatives. We assume an initial pressure state and at each time step compute the wetting- and non wetting-fluid pressures at a given saturation. Then, we solve Richards’s equation for the non wetting-fluid saturation and proceed to the next time step with the updated saturations values. The pressure and saturation equations are first solved separately and the results compared to known analytical solutions showing the accuracy of the algorithm. Then, the coupled system is solved. In all the cases, the non-wetting fluid is injected at a given point in space as a boundary condition and capillarity effects are taken into account. The examples consider oil injection in a water-saturated porous medium. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88830 Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-243 2190-0566 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88830 |
identifier_str_mv |
Carcione, Jose M.; Picotti, Stefano; Santos, Juan Enrique; Qadrouh, Ayman; Almalki, Hashim S.; Numerical simulation of two-phase fluid flow; Springer; Journal of Petroleum Exploration and Production Technology; 4; 3; 9-2014; 233-243 2190-0566 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13202-014-0109-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13202-014-0109-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614118372278272 |
score |
13.070432 |