Graphene and non-Abelian quantization

Autores
Falomir, Horacio Alberto; Gamboa, Jorge; Loewe, Marcelo; Nieto, Mariela Natalia
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a $\zeta$-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129601

id SEDICI_cce23acc462c6c369813bf1e729b0df1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129601
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Graphene and non-Abelian quantizationFalomir, Horacio AlbertoGamboa, JorgeLoewe, MarceloNieto, Mariela NataliaCiencias ExactasFísicagrapheneHeisenberg algebraperturbation theoryIn this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a $\zeta$-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.Instituto de Física La Plata2012-03-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/129601enginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8113/45/13/135308info:eu-repo/semantics/altIdentifier/issn/1751-8113info:eu-repo/semantics/altIdentifier/issn/1751-8121info:eu-repo/semantics/altIdentifier/arxiv/1109.6666info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/13/135308info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:12Zoai:sedici.unlp.edu.ar:10915/129601Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:12.571SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Graphene and non-Abelian quantization
title Graphene and non-Abelian quantization
spellingShingle Graphene and non-Abelian quantization
Falomir, Horacio Alberto
Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
title_short Graphene and non-Abelian quantization
title_full Graphene and non-Abelian quantization
title_fullStr Graphene and non-Abelian quantization
title_full_unstemmed Graphene and non-Abelian quantization
title_sort Graphene and non-Abelian quantization
dc.creator.none.fl_str_mv Falomir, Horacio Alberto
Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
author Falomir, Horacio Alberto
author_facet Falomir, Horacio Alberto
Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
author_role author
author2 Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
topic Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
dc.description.none.fl_txt_mv In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a $\zeta$-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.
Instituto de Física La Plata
description In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a $\zeta$-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.
publishDate 2012
dc.date.none.fl_str_mv 2012-03-20
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129601
url http://sedici.unlp.edu.ar/handle/10915/129601
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8113/45/13/135308
info:eu-repo/semantics/altIdentifier/issn/1751-8113
info:eu-repo/semantics/altIdentifier/issn/1751-8121
info:eu-repo/semantics/altIdentifier/arxiv/1109.6666
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/13/135308
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783479709171712
score 12.982451