Verma and simple modules for quantum groups at non-abelian groups
- Autores
- Pogorelsky, Barbara; Vay, Cristian Damian
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group S3 attached to the 12-dimensional Fomin–Kirillov algebra, computing all the simple modules and calculating their dimensions.
Fil: Pogorelsky, Barbara. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
FOMIN-KIRILLOV ALGEBRAS
HOPF ALGEBRAS
NICHOLS ALGEBRAS
QUANTUM GROUPS
REPRESENTATION THEORY
VERMA MODULES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58449
Ver los metadatos del registro completo
id |
CONICETDig_1a9031c107bd08c266ca5d81706a98c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58449 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Verma and simple modules for quantum groups at non-abelian groupsPogorelsky, BarbaraVay, Cristian DamianFOMIN-KIRILLOV ALGEBRASHOPF ALGEBRASNICHOLS ALGEBRASQUANTUM GROUPSREPRESENTATION THEORYVERMA MODULEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group S3 attached to the 12-dimensional Fomin–Kirillov algebra, computing all the simple modules and calculating their dimensions.Fil: Pogorelsky, Barbara. Universidade Federal do Rio Grande do Sul; BrasilFil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAcademic Press Inc Elsevier Science2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58449Pogorelsky, Barbara; Vay, Cristian Damian; Verma and simple modules for quantum groups at non-abelian groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 301; 10-2016; 423-4570001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816308039info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2016.06.019info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:43:10Zoai:ri.conicet.gov.ar:11336/58449instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:43:10.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Verma and simple modules for quantum groups at non-abelian groups |
title |
Verma and simple modules for quantum groups at non-abelian groups |
spellingShingle |
Verma and simple modules for quantum groups at non-abelian groups Pogorelsky, Barbara FOMIN-KIRILLOV ALGEBRAS HOPF ALGEBRAS NICHOLS ALGEBRAS QUANTUM GROUPS REPRESENTATION THEORY VERMA MODULES |
title_short |
Verma and simple modules for quantum groups at non-abelian groups |
title_full |
Verma and simple modules for quantum groups at non-abelian groups |
title_fullStr |
Verma and simple modules for quantum groups at non-abelian groups |
title_full_unstemmed |
Verma and simple modules for quantum groups at non-abelian groups |
title_sort |
Verma and simple modules for quantum groups at non-abelian groups |
dc.creator.none.fl_str_mv |
Pogorelsky, Barbara Vay, Cristian Damian |
author |
Pogorelsky, Barbara |
author_facet |
Pogorelsky, Barbara Vay, Cristian Damian |
author_role |
author |
author2 |
Vay, Cristian Damian |
author2_role |
author |
dc.subject.none.fl_str_mv |
FOMIN-KIRILLOV ALGEBRAS HOPF ALGEBRAS NICHOLS ALGEBRAS QUANTUM GROUPS REPRESENTATION THEORY VERMA MODULES |
topic |
FOMIN-KIRILLOV ALGEBRAS HOPF ALGEBRAS NICHOLS ALGEBRAS QUANTUM GROUPS REPRESENTATION THEORY VERMA MODULES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group S3 attached to the 12-dimensional Fomin–Kirillov algebra, computing all the simple modules and calculating their dimensions. Fil: Pogorelsky, Barbara. Universidade Federal do Rio Grande do Sul; Brasil Fil: Vay, Cristian Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The Drinfeld double D of the bosonization of a finite-dimensional Nichols algebra B(V) over a finite non-abelian group G is called a quantum group at a non-abelian group. We introduce Verma modules over such a quantum group D and prove that a Verma module has simple head and simple socle. This provides two bijective correspondences between the set of simple modules over D and the set of simple modules over the Drinfeld double D(G). As an example, we describe the lattice of submodules of the Verma modules over the quantum group at the symmetric group S3 attached to the 12-dimensional Fomin–Kirillov algebra, computing all the simple modules and calculating their dimensions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58449 Pogorelsky, Barbara; Vay, Cristian Damian; Verma and simple modules for quantum groups at non-abelian groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 301; 10-2016; 423-457 0001-8708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58449 |
identifier_str_mv |
Pogorelsky, Barbara; Vay, Cristian Damian; Verma and simple modules for quantum groups at non-abelian groups; Academic Press Inc Elsevier Science; Advances in Mathematics; 301; 10-2016; 423-457 0001-8708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816308039 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2016.06.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082936027217920 |
score |
13.22299 |