Graphene and non-Abelian quantization
- Autores
- Falomir, Horacio Alberto; Gamboa, J; Loewe, M; Nieto, Mariela Natalia
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian, which reduces in the large mass limit while keeping the Fermi velocity fixed,to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows us to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest-neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a ζ -function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.
Fil: Falomir, Horacio Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gamboa, J. Pontificia Universidad Católica de Chile. Facultad de Física; Chile
Fil: Loewe, M. Pontificia Universidad Católica de Chile. Facultad de Física; Chile
Fil: Nieto, Mariela Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Graphene
Anomalous Integer Quantum Hall Effect
Non-Abelian Quantization
Non-commutative Quantum Mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/271214
Ver los metadatos del registro completo
id |
CONICETDig_4df836976d8f5c11cce68470ffb664e5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/271214 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graphene and non-Abelian quantizationFalomir, Horacio AlbertoGamboa, JLoewe, MNieto, Mariela NataliaGrapheneAnomalous Integer Quantum Hall EffectNon-Abelian QuantizationNon-commutative Quantum Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian, which reduces in the large mass limit while keeping the Fermi velocity fixed,to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows us to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest-neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a ζ -function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.Fil: Falomir, Horacio Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gamboa, J. Pontificia Universidad Católica de Chile. Facultad de Física; ChileFil: Loewe, M. Pontificia Universidad Católica de Chile. Facultad de Física; ChileFil: Nieto, Mariela Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/271214Falomir, Horacio Alberto; Gamboa, J; Loewe, M; Nieto, Mariela Natalia; Graphene and non-Abelian quantization; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 13; 4-2012; 1-211751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/45/13/135308info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/13/135308info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:12Zoai:ri.conicet.gov.ar:11336/271214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:13.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graphene and non-Abelian quantization |
title |
Graphene and non-Abelian quantization |
spellingShingle |
Graphene and non-Abelian quantization Falomir, Horacio Alberto Graphene Anomalous Integer Quantum Hall Effect Non-Abelian Quantization Non-commutative Quantum Mechanics |
title_short |
Graphene and non-Abelian quantization |
title_full |
Graphene and non-Abelian quantization |
title_fullStr |
Graphene and non-Abelian quantization |
title_full_unstemmed |
Graphene and non-Abelian quantization |
title_sort |
Graphene and non-Abelian quantization |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto Gamboa, J Loewe, M Nieto, Mariela Natalia |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto Gamboa, J Loewe, M Nieto, Mariela Natalia |
author_role |
author |
author2 |
Gamboa, J Loewe, M Nieto, Mariela Natalia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Graphene Anomalous Integer Quantum Hall Effect Non-Abelian Quantization Non-commutative Quantum Mechanics |
topic |
Graphene Anomalous Integer Quantum Hall Effect Non-Abelian Quantization Non-commutative Quantum Mechanics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian, which reduces in the large mass limit while keeping the Fermi velocity fixed,to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows us to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest-neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a ζ -function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum. Fil: Falomir, Horacio Alberto. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Gamboa, J. Pontificia Universidad Católica de Chile. Facultad de Física; Chile Fil: Loewe, M. Pontificia Universidad Católica de Chile. Facultad de Física; Chile Fil: Nieto, Mariela Natalia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
In this paper, we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian, which reduces in the large mass limit while keeping the Fermi velocity fixed,to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows us to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest-neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a ζ -function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/271214 Falomir, Horacio Alberto; Gamboa, J; Loewe, M; Nieto, Mariela Natalia; Graphene and non-Abelian quantization; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 13; 4-2012; 1-21 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/271214 |
identifier_str_mv |
Falomir, Horacio Alberto; Gamboa, J; Loewe, M; Nieto, Mariela Natalia; Graphene and non-Abelian quantization; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 13; 4-2012; 1-21 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/45/13/135308 info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/13/135308 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613602780119040 |
score |
13.070432 |