Video Surveillance for Road Traffic Monitoring
- Autores
- Torres, Guillermo; Caminal, Iván; Maldonado, Cristina; Górriz, Marc
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This work proposes a framework for road traffic surveillance using computer vision techniques. After a foreground estimation, post processing techniques are applied to the detected vehicles in motion to generate blobs. Then, a tracking approach based on Kalman filters is used to extract instantaneous information throughout a video sequence, including speed and trajectory estimation and imprudent driving detection. The system has been developed in Python and can be launched in real-time using a standard CPU. The code is available at github: https://github.com/mcv-m6-video/mcv-m6-2018-team3.
XVI Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
traffic control
road monitoring
foreground segmentation
vehicle tracking
kalman filter
speed estimator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/73214
Ver los metadatos del registro completo
id |
SEDICI_cc8ca0bd7603be83b54b8a46bad72e29 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/73214 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Video Surveillance for Road Traffic MonitoringTorres, GuillermoCaminal, IvánMaldonado, CristinaGórriz, MarcCiencias Informáticastraffic controlroad monitoringforeground segmentationvehicle trackingkalman filterspeed estimatorThis work proposes a framework for road traffic surveillance using computer vision techniques. After a foreground estimation, post processing techniques are applied to the detected vehicles in motion to generate blobs. Then, a tracking approach based on Kalman filters is used to extract instantaneous information throughout a video sequence, including speed and trajectory estimation and imprudent driving detection. The system has been developed in Python and can be launched in real-time using a standard CPU. The code is available at github: https://github.com/mcv-m6-video/mcv-m6-2018-team3.XVI Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2018-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf412-421http://sedici.unlp.edu.ar/handle/10915/73214enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:15:05Zoai:sedici.unlp.edu.ar:10915/73214Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:15:05.278SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Video Surveillance for Road Traffic Monitoring |
title |
Video Surveillance for Road Traffic Monitoring |
spellingShingle |
Video Surveillance for Road Traffic Monitoring Torres, Guillermo Ciencias Informáticas traffic control road monitoring foreground segmentation vehicle tracking kalman filter speed estimator |
title_short |
Video Surveillance for Road Traffic Monitoring |
title_full |
Video Surveillance for Road Traffic Monitoring |
title_fullStr |
Video Surveillance for Road Traffic Monitoring |
title_full_unstemmed |
Video Surveillance for Road Traffic Monitoring |
title_sort |
Video Surveillance for Road Traffic Monitoring |
dc.creator.none.fl_str_mv |
Torres, Guillermo Caminal, Iván Maldonado, Cristina Górriz, Marc |
author |
Torres, Guillermo |
author_facet |
Torres, Guillermo Caminal, Iván Maldonado, Cristina Górriz, Marc |
author_role |
author |
author2 |
Caminal, Iván Maldonado, Cristina Górriz, Marc |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas traffic control road monitoring foreground segmentation vehicle tracking kalman filter speed estimator |
topic |
Ciencias Informáticas traffic control road monitoring foreground segmentation vehicle tracking kalman filter speed estimator |
dc.description.none.fl_txt_mv |
This work proposes a framework for road traffic surveillance using computer vision techniques. After a foreground estimation, post processing techniques are applied to the detected vehicles in motion to generate blobs. Then, a tracking approach based on Kalman filters is used to extract instantaneous information throughout a video sequence, including speed and trajectory estimation and imprudent driving detection. The system has been developed in Python and can be launched in real-time using a standard CPU. The code is available at github: https://github.com/mcv-m6-video/mcv-m6-2018-team3. XVI Workshop Computación Gráfica, Imágenes y Visualización (WCGIV) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This work proposes a framework for road traffic surveillance using computer vision techniques. After a foreground estimation, post processing techniques are applied to the detected vehicles in motion to generate blobs. Then, a tracking approach based on Kalman filters is used to extract instantaneous information throughout a video sequence, including speed and trajectory estimation and imprudent driving detection. The system has been developed in Python and can be launched in real-time using a standard CPU. The code is available at github: https://github.com/mcv-m6-video/mcv-m6-2018-team3. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/73214 |
url |
http://sedici.unlp.edu.ar/handle/10915/73214 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 412-421 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904098334048256 |
score |
12.993085 |